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Presentation Outline

« Benefits statement
« Goal, objectives

 Technical status: fracture code,
experimental results (poro, AE)
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Benefit to the Program

 Goal: develop technologies to predict CO2
storage capacity in geologic formations.

 Benefits statement: develop 3D boundary
element code & experimental techniques
(poro, AE) to simulate fracture in a porous
rock; this work contributes to the ability to
predict storage and containment.
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Project Overview:
Goals and Objectives

« Goal: support/train graduate students
working on simulation of fracture.

* Objectives:

— devise techniques related to laboratory testing of
fluid-saturated rock (plane-strain apparatus);

— develop predictive models for the simulation of
fracture (3D BEM code);

— establish educational framework for geologic
storage issues (poroelastic, exp geomech, BEM).
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Technical Status

* Fracture code provides crack displacements of
fracture (& stresses); develop arbitrarily oriented
cracks & boundaries, higher order approximations &
crack tip shape functions; arbitrary body force.
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mode |

Penny-shaped crack

258 elements BEM

4128 elements BEM

1032 elements BEM
- Analytical soln.
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mode |l

Penny-shaped crack
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Rock—porous media

Porous sandstone Representative volume element

¢ =V,/V =porosity

P = g,, /3 = mean stress

U = pore pressure
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Drained condition

drained: du=0

K =drained bulk modulus

K =y &
8V du=0
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Undrained condition

undrained: dm;=0

K —V OP| undrained bulk
u modulus
av dmfZO
B — a_u Skempton’s
OP T coefficient
=

K vV OU  fluid bulk
f fgvf modulus
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Unjacketed condition

AN

P
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unjacketed: dP =du

unjacketed bulk modulus

K=y M

8V du=dP

unjacketed pore bulk
modulus

K,"=V, G_U
oV,

du=dP
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Equations of poroelasticity

K _ . ,
o :1_F Biot’s coef (1955) effective stress: P'=P—al
S
K =K+ aK generalized Gassman equation
1 1 (Brown and Korringa 1975)
(1- )a+¢K -
K, K, 0<K <K,
B = L = il corrected Skempton coefficient
1) _VL K oK, (Bishop 1976)
B meas V aKf

V| = volume of fluid in system
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Plane strain testing

University of Minnesota
Plane Strain Apparatus
U.S. Patent 5,063,785

5 LVDTs
8 AE sensors

Specimen size:
100 x 86 x 44 mm

downstream pressure
 (pressure t cer)

ransdu
T
€1

— (LVDTs)

O, = Eg; + v(0;,+03)

/

O3 — (oil pressure; )

€, — (strain gages)
P
/—> €3 — (LVDTs)
upstream pressure
“(pressure transducer)

01 — (load cell)
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Berea sandstone

Slightly anisotropic (5% difference for
ultrasonic velocities and 10% in UCYS)

Porosity = 23%, permeability = 40 mD (at
5 MPa eff stress), density = 2100 kg/m?3,
E=13-15GPa, v=0.31
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Results

Test# | P[MPa] |u[MPa]| E [GPa] 1% K, K, [GPa] | G [GPa]
BxBs-6d 6 0 10.9 |0.31 9.6 4.2
BxBs-11d 5 0 10.8 | 0.32 10.0 4.1
BxBs-2u | 8.2 2.8 13.2 | 0.34 13.8 4.9
BxBs-3u 10 3.8 13.5 | 0.35 15.0 5.0
BxBs-12u| 10 3.4 15.3 | 0.34 15.9 5.9

m UNIVERSITY OF MINNESOTA

Driven to Discover 15



Acoustic Emission

Inelastic response (yielding) of rock is associated with microcracks,
which generate elastic waves called acoustic emission (AE).

microcrack
/ p
| \ # \V; V/\\//\\/\V/\V/\ AV
elastic wave g \/
transducer

Transient elastic wave can be recorded by transducers placed on the
surface; statistics (rate) and locations (15t arrival) can be studied.
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Acoustic Emission
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In dry rock, increase in AE rate when What about |iquid_

deformation becomes inelastic. saturated rock?
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AE system

/ Data acquisition

AE data

AE sensors
i e !

X = m
>

800 900 1000 1100 1200

AY

Samples

AE sensors (0.3-1.8 MHz, 3.6 mm diameter, PA S9225)
Preamplifiers (0.1-1.2 MHz filter, 40 dB gain, PA 1220C)
Digitizer (LeCroy 6840 or National Instruments 5112)
Amplitude threshold trigger

-l
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Location of AE

Four unknowns: (X, Y, z) and t, event coordinates and time

Know: (X, Y;, ) sensor coordinates, t, arrival time at the i sensor,
c, P-wave velocity

Distance between the source and the it" sensor
rn=c,€ -t}

N R ) SR ey
Levenberg-Marquardt optimization - minimize I:

N
| = Zeiz
i=1
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AE locations (dry test)
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AE locations (unjacketed)
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Failed specimen

Possible to detect
AE locations in

liquid saturated rock

153 events were
located with error
less than 3 mm

Faillure mechanism —
axial splitting
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AE rate - load

Drained Undrained
350 T 4500 350 ) - peak 1500
T peak |nela§t|c
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AE rate - deformation
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Pore pressure [MPa]
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Accomplishments to Date

— BEM code to simulate crack propagation; needed to
assess storage/containment.

— Poroelastic parameters from drained and undrained
plane-strain compression; needed to predict
reservoir response.

— AE rates found to be different under drained and
undrained conditions; rock’s tendency to dilate
delayed under undrained condition. To assess
reservoir response, inelastic behavior must be
understood.
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Summary

— Key Findings: 3D BEM fracture code with
nody forces,; poroelastic parmeters from
nlane strain compression testing.

— Lessons Learned: saturation critical.

— Future Plans: assessment of risks related to
fracturing of the reservoir and the caprock;
heterogeneity of rock mass; body force (pore
pressure gradient induced) a significant
feature.

M UNIVERSITY OF MINNESOTA ey

Driven to Discover 25



Appendix
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Organization “Chart”

« J.F. Labuz, PI. experimentalist, with two patents;
fracture and strength of rock, acoustic emission. E.
Detournay, co-PIl: poroelasticity, hydraulic fracturing.
S. Mogilevskaya, co-Pl: applied mathematician,
boundary integral methods, especially modeling
fracture propagation.

« R. Makhnenko, D. Nikolski: Ph.D. students: A.

Pyatigorets: Ph.D., partial support; J. Meyer: M.S.,
partial support.
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Gantt Chart

Activities

Time (1 block = 2 months)

Year 1

Year 2

Year 3

Task 1.0 Project
management

Task 2.0 Experiments

2.1 System calibration

2.2.1 Undrained
testing

2.2.2 Drained testing

2.3 AE/damage
assessment

Task 3.0 Numerical
modeling

3.1 Two-D BEM

3.2 Three-D BEM

3.3 Fluid coupling

Task 4.0 Course
development

4.1 Experimental
mechanics

4.2 Poro/thermal
elasticity

4.3 Boundary element
modeling
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