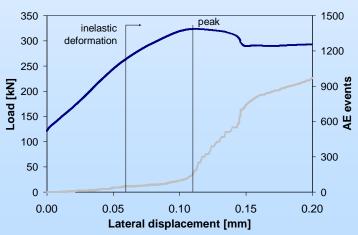
Geomechanical simulation of fluid-driven fracture

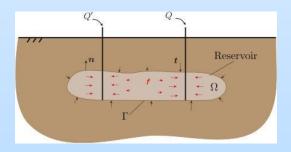
DE-FE0002020


Joseph F. Labuz
Civil Engineering
University of Minnesota

U.S. Department of Energy

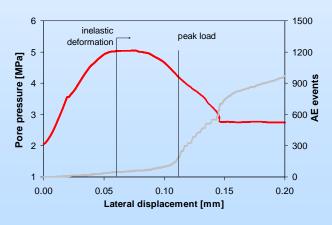
National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the
Infrastructure for CO₂ Storage
August 21-23, 2012

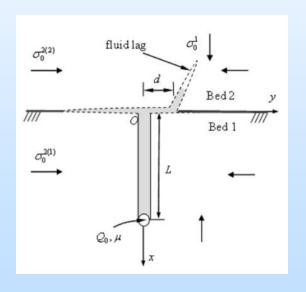
Presentation Outline


- Benefits statement
- Goal, objectives
- Technical status: fracture code, experimental results (poro, AE)
- Accomplishments
- Summary

Benefit to the Program

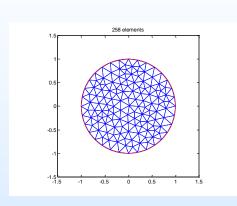
- Goal: develop technologies to predict CO2 storage capacity in geologic formations.
- Benefits statement: develop 3D boundary element code & experimental techniques (poro, AE) to simulate fracture in a porous rock; this work contributes to the ability to predict storage and containment.

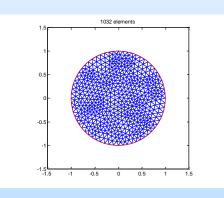

Project Overview: Goals and Objectives

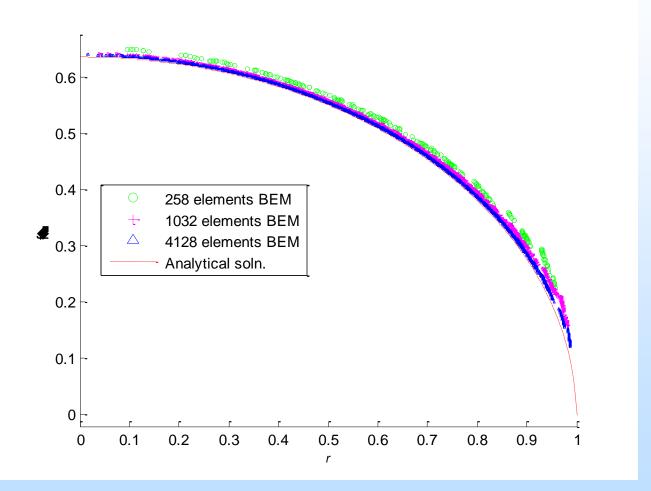

- Goal: support/train graduate students working on simulation of fracture.
- Objectives:
 - devise techniques related to laboratory testing of fluid-saturated rock (plane-strain apparatus);
 - develop predictive models for the simulation of fracture (3D BEM code);
 - establish educational framework for geologic storage issues (poroelastic, exp geomech, BEM).

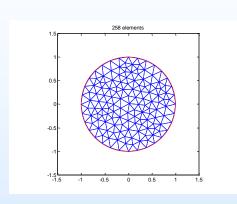
Technical Status

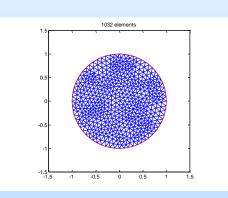
 Fracture code provides crack displacements of fracture (& stresses); develop arbitrarily oriented cracks & boundaries, higher order approximations & crack tip shape functions; arbitrary body force.

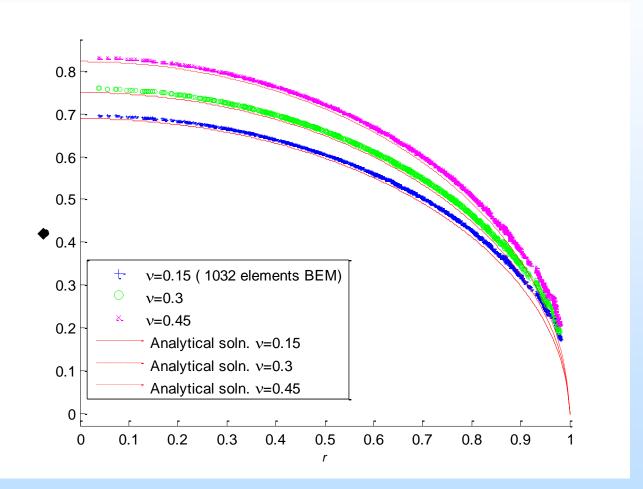

Experimental results.



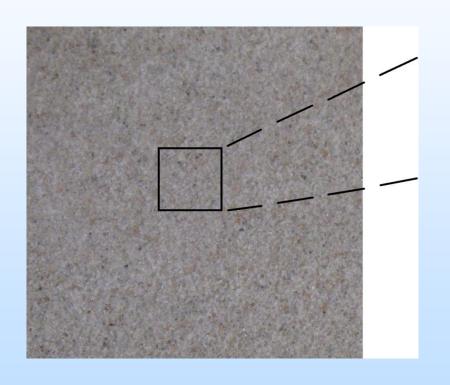


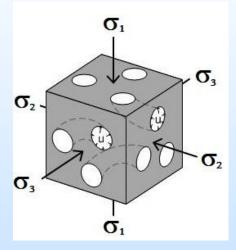

Penny-shaped crack: mode I





Penny-shaped crack: mode II

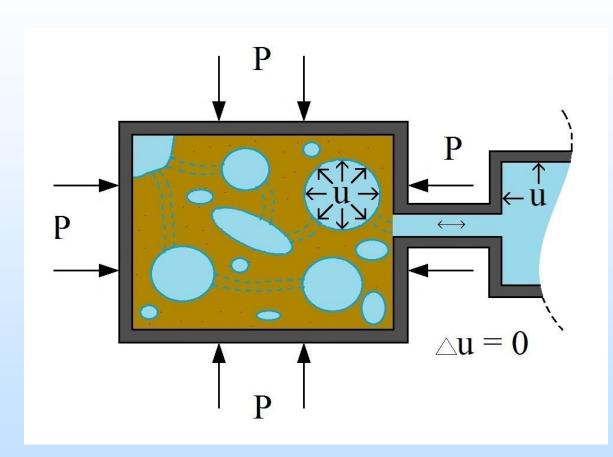




Rock—porous media

Porous sandstone

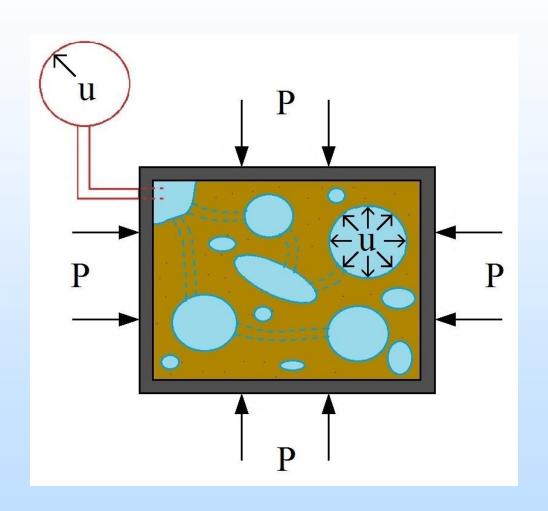
Representative volume element


$$\phi = V_{\phi} / V = \text{porosity}$$

$$P = \sigma_{kk} / 3 = \text{mean stress}$$

$$u = pore pressure$$

Drained condition

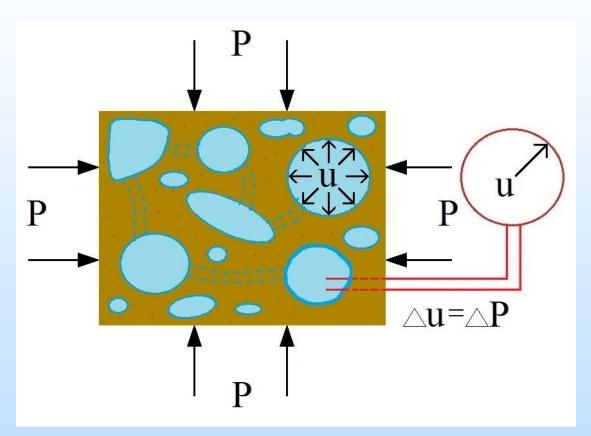


drained: du = 0

K = drained bulk modulus

$$K = V \left. \frac{\partial P}{\partial V} \right|_{du=0}$$

Undrained condition


undrained: $dm_f = 0$

$$K_u = V \left. \frac{\partial P}{\partial V} \right|_{dm_f = 0} \begin{array}{c} \text{undrained bulk} \\ \text{modulus} \end{array}$$

$$B = \frac{\partial u}{\partial P} \bigg|_{dm_f = 0}$$
 Skempton's coefficient

$$K_f = V_f \, \frac{\partial u}{\partial V_f} \quad \begin{array}{ll} \text{fluid bulk} \\ \text{modulus} \end{array}$$

Unjacketed condition

unjacketed: dP = du

unjacketed bulk modulus

$$K_s' = V \frac{\partial u}{\partial V} \bigg|_{du=dP}$$

unjacketed pore bulk modulus

$$K_{s}"=V_{\phi}\left.\frac{\partial u}{\partial V_{\phi}}\right|_{du=dP}$$

Equations of poroelasticity

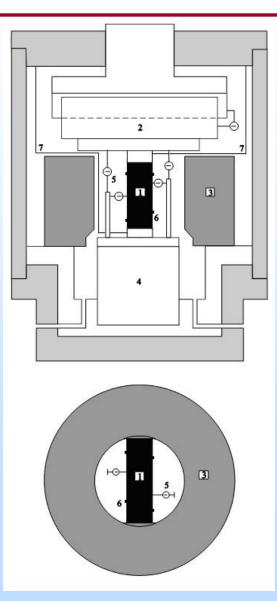
$$\alpha = 1 - \frac{K}{K_s}$$
 Biot's coef (1955)

effective stress:
$$P'=P-\alpha u$$

$$K_{u} = K + \frac{\alpha^{2}K}{(1 - \alpha)\alpha + \phi K \left(\frac{1}{K_{f}} - \frac{1}{K_{s}"}\right)}$$

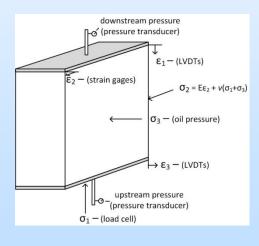
$$0 < K \le K_{u}$$

$$B^{cor} = \frac{1}{\left(\frac{1}{B}\right)_{meas} - \frac{V_L}{V} \frac{K}{\alpha K_f}} = \frac{K_u - K}{\alpha K_u}$$
 corrected Skempton coefficient (Bishop 1976)

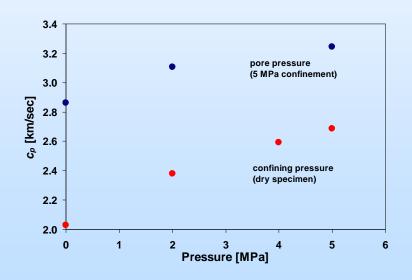

 V_L = volume of fluid in system

Plane strain testing

University of Minnesota Plane Strain Apparatus U.S. Patent 5,063,785



5 LVDTs 8 AE sensors

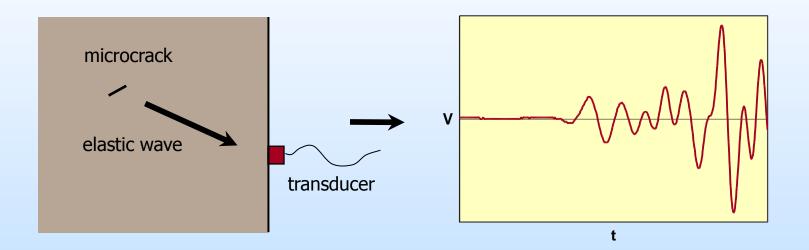

Specimen size: 100 x 86 x 44 mm

Berea sandstone

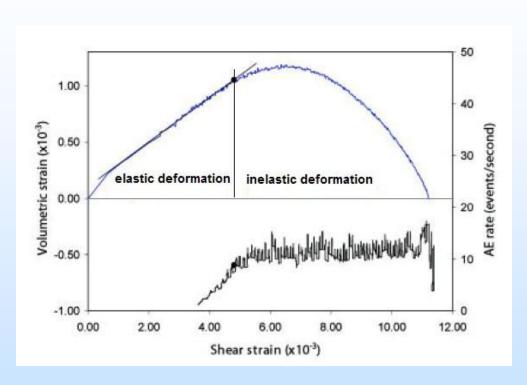
Slightly anisotropic (5% difference for ultrasonic velocities and 10% in UCS)

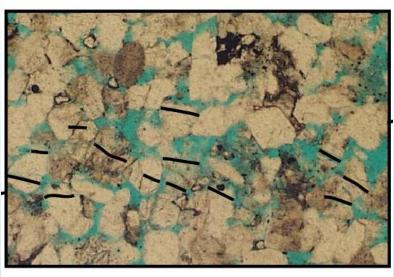
Porosity = 23%, permeability = 40 mD (at 5 MPa eff stress), density = 2100 kg/m³, E = 13-15 GPa, $\nu = 0.31$

 c_p = P-wave velocity increasing with mean stress and pore pressure


Results

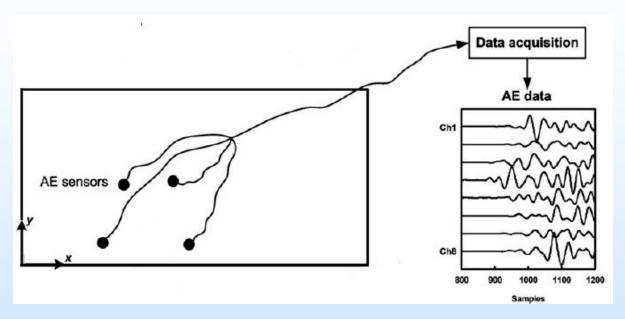
Test #	P [MPa]	u [MPa]	E [GPa]	ν	K, K _u [GPa]	G [GPa]		
BxBs-6d	6	0	10.9	0.31	9.6	4.2		
BxBs-11d	5	0	10.8	0.32	10.0	4.1		
BxBs-2u	8.2	2.8	13.2	0.34	13.8	4.9		
BxBs-3u	10	3.8	13.5	0.35	15.0	5.0		
BxBs-12u	10	3.4	15.3	0.34	15.9	5.9		


Acoustic Emission


Inelastic response (yielding) of rock is associated with microcracks, which generate elastic waves called acoustic emission (AE).

Transient elastic wave can be recorded by transducers placed on the surface; statistics (rate) and locations (1st arrival) can be studied.

Acoustic Emission


Microphotograph of a fractured rock

In dry rock, increase in AE rate when deformation becomes inelastic.

What about liquidsaturated rock?

AE system

- 1. AE sensors (0.3-1.8 MHz, 3.6 mm diameter, PA S9225)
- 2. Preamplifiers (0.1-1.2 MHz filter, 40 dB gain, PA 1220C)
- 3. Digitizer (LeCroy 6840 or National Instruments 5112)
- 4. Amplitude threshold trigger

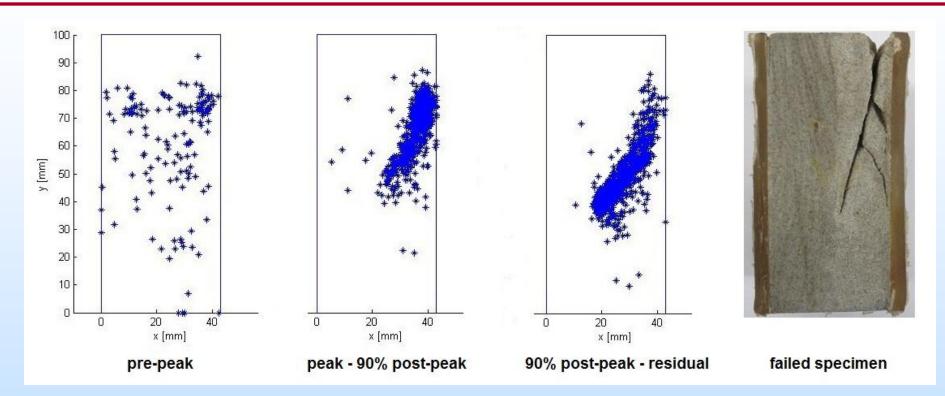
Location of AE

Four unknowns: (x, y, z) and t, event coordinates and time

Know: (x_i, y_i, z_i) sensor coordinates, t_i arrival time at the i^{th} sensor, c_p P-wave velocity

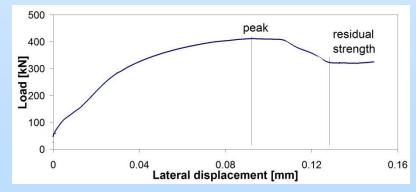
Distance between the source and the i^{th} sensor

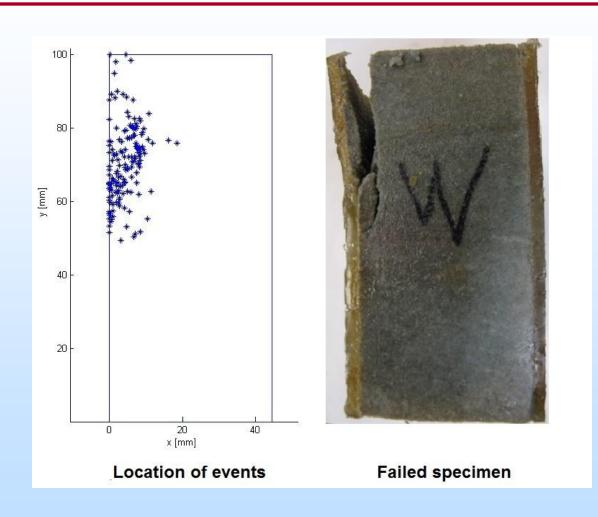
$$r_i = c_p \, \mathbf{\zeta}_i - t \, \mathbf{\varepsilon}_i$$


$$r_i = \sqrt{(x_i - x)^2 + (y_i - y)^2 + (z_i - z)^2}$$

Levenberg-Marquardt optimization - minimize *I*:

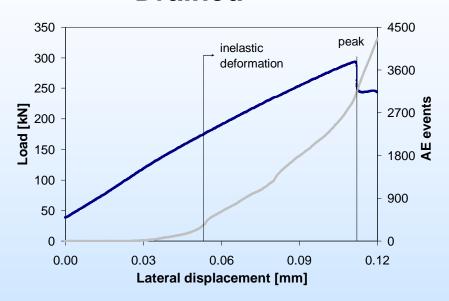
$$I = \sum_{i=1}^{N} \varepsilon_i^2$$


AE locations (dry test)

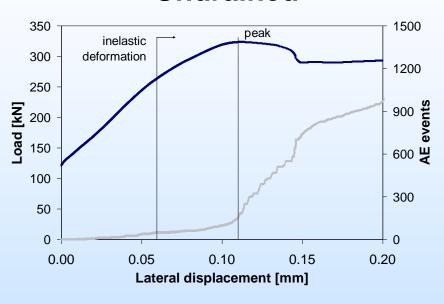

AE events:

- random before peak
- localized in post-peak

AE locations (unjacketed)

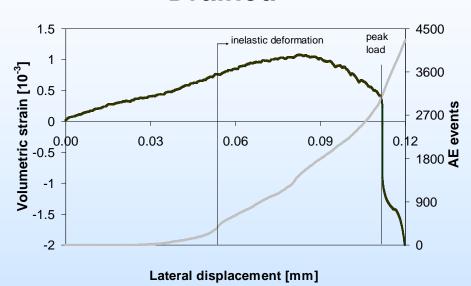

Possible to detect
AE locations in
liquid saturated rock

153 events were located with error less than 3 mm


Failure mechanism – axial splitting

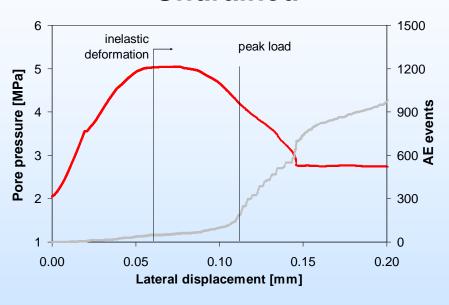
AE rate - load

Undrained



Drained: 2700 events in pre-peak

Undrained: 170 events in pre-peak


AE rate - deformation

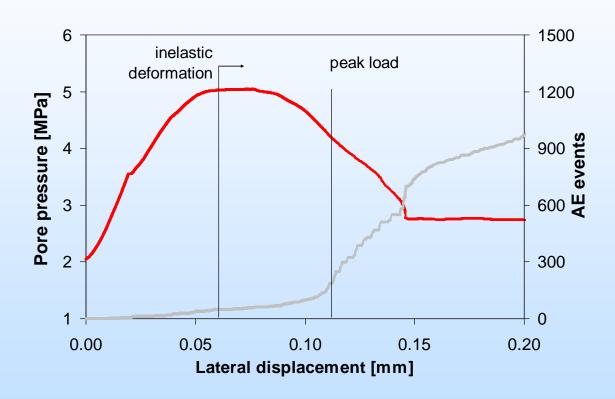
Drained

Drained (rates): inelastic 130 events/min post-peak 410 events/min

Undrained

Undrained (rates):inelastic 3 events/minpost-peak 210 events/min

Accomplishments to Date


- BEM code to simulate crack propagation; needed to assess storage/containment.
- Poroelastic parameters from drained and undrained plane-strain compression; needed to predict reservoir response.
- AE rates found to be different under drained and undrained conditions; rock's tendency to dilate delayed under undrained condition. To assess reservoir response, inelastic behavior must be understood.

Summary

- Key Findings: 3D BEM fracture code with body forces; poroelastic parmeters from plane strain compression testing.
- Lessons Learned: saturation critical.
- Future Plans: assessment of risks related to fracturing of the reservoir and the caprock; heterogeneity of rock mass; body force (pore pressure gradient induced) a significant feature.

Appendix

Organization "Chart"

- J.F. Labuz, PI: experimentalist, with two patents; fracture and strength of rock, acoustic emission. E. Detournay, co-PI: poroelasticity, hydraulic fracturing.
 S. Mogilevskaya, co-PI: applied mathematician, boundary integral methods, especially modeling fracture propagation.
- R. Makhnenko, D. Nikolski: Ph.D. students; A. Pyatigorets: Ph.D., partial support; J. Meyer: M.S., partial support.

Gantt Chart

Activities	Time (1 block = 2 months)																
	Year 1				Year 2					Year 3							
Task 1.0 Project management																	
Task 2.0 Experiments																	
2.1 System calibration																	
2.2.1 Undrained testing						,											
2.2.2 Drained testing																	
2.3 AE/damage assessment																	
Task 3.0 Numerical modeling																	
3.1 Two-D BEM																	
3.2 Three-D BEM																	
3.3 Fluid coupling																	
Task 4.0 Course development																	
4.1 Experimental mechanics																	
4.2 Poro/thermal elasticity																	
4.3 Boundary element modeling																	

Bibliography

Refereed

- Mogilevskaya, S.G., Crouch, S.L. 2012. Combining Maxwell's methodology with the BEM for evaluating the two-dimensional effective properties of composite and micro-cracked materials. Computational Mechanics. In print, DOI: 10.1007/s00466-012-0735-5.
- Pyatigorets, A.V., Mogilevskaya, S.G. 2011. Evaluation of effective transverse mechanical properties of isotropic viscoelastic composite materials. Journal of Composite Materials. 45, 2641 - 2658.

Proceedings

- Nikolski, D.V., Mogilevskaya, S. G. and Labuz, J.F., 2012. Three-dimensional Boundary Element modeling of fracture under gravity load. Proc. 46th U.S. Symposium Rock Mechanics, 24-27 June, Chicago, IL, ARMA 12-450.
- Mogilevskaya, S. G., Labuz, J.F. and Crouch, S. L., 2012. Extension of Maxwell's methodology for evaluating the effective properties of rock. Proc. 46th U.S. Symposium Rock Mechanics, 24-27 June, Chicago, IL, ARMA 12-446.

Bibliography

Proceedings

- Makhnenko, R.Y. Labuz, J.F. 2012. AE in saturated rock under plane strain compression. Proc. Acoustic Emission Working Group 54th Meeting (AEWG-54), Princeton, NJ, 21-22 May 2012.
- Makhnenko, R.Y., Ge, C., Labuz, J.F. 2012. AE from undrained and unjacketed tests on sandstone. Proc. 46th U.S. Symposium Rock Mechanics, Chicago, IL, 24-27 June, ARMA 12-581.
- Makhnenko, R., Labuz, J.F. 2012 Drained and undrained plane strain compression of porous rock. Proc. XXIII International Conference of Theoretical and Applied Mechanics (ICTAM2012), Beijing, China, 19-24 August, paper FS10-020.
- Nikolski, D.V., Mogilevskaya, S.G., Labuz, J.F., 2011. Three-dimensional boundary element modeling of fractures under gravity load. Symposium International Association for Boundary Element Methods. Brescia, Italy 5-8 September, p. 237.