Integrated Electrochemical Processes for CO₂ Capture and Conversion to Commodity Chemicals

Project Number: DE-FE0004271

Dr. Jennifer A. Kozak,^{1,2} Dr. Fritz Simeon,² Prof. T. Alan Hatton,*,² and Prof. Timothy F. Jamison*,¹

¹Department of Chemistry and ²Department of Chemical Engineering Massachusetts Institute of Technology

U.S. Department of Energy

National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 21-23, 2012

Presentation Outline

- Motivation, Goals, Objectives
- Background
- Cyclic Carbonate Synthesis via Catalytic Coupling of CO₂ and Epoxides
- New Catalysts and Reaction Scope
- Mechanism A New Paradigm for Activating Epoxides
- Conclusions

Benefit to the Program

- Identify the Program goals being addressed.
 - Develop technologies to demonstrate that 99 percent of injected CO₂ remains in the injection zones.
- The research project is developing a novel approach to capturing and converting CO₂ into commodity chemicals, which may thus reduce the burden on CO₂ storage sites, in addition to providing a means to reduce anthropogenic CO₂ emissions and an inexpensive method for producing useful materials from CO₂.

Project Overview:

Goals and Objectives

- To develop and demonstrate a novel chemical sequestration technology that utilizes CO₂ from dilute gas streams generated at industrial carbon emitters as a raw material in order to produce useful commodity chemicals.
 - Single electrochemical system for CO₂ capture and chemical conversion
 - Coupled system for CO₂ capture and chemical conversion

Project Overview:

Goals and Objectives

- To develop and demonstrate a novel chemical sequestration technology that utilizes CO₂ from dilute gas streams generated at industrial carbon emitters as a raw material in order to produce useful commodity chemicals.
 - Single electrochemical system for CO₂ capture and chemical conversion
 - Coupled system for CO₂ capture and <u>chemical</u> conversion

Accomplishments to Date

- A novel catalytic method for the continuous chemical conversion of CO₂ has been developed and thoroughly investigated mechanistically.
 - Several novel chemical features.
 - Several advantages over existing methods.
 - Springboard for development of several other classes of CO₂ conversion.
- We envision coupling this continuous chemical conversion with a newly developed electrochemical capture/separation system.
- We anticipate that this continuous chemical conversion can be coupled with a variety of other CO₂ capture methods.

Motivation for CO₂ Capture, Sequestration, and Conversion

Anthropogenic carbon dioxide (CO₂)

- considered a primary cause of global climate change
- coal-fired power plants, and the petroleum and natural gas industries account for 86% of anthropogenic CO₂
- we will continue to depend on nonrenewable fossil fuels for the next several decades

The CO₂ cycle is not balanced

- 3.9% excess (caused by anthropogenic CO₂) with respect to the yearly CO₂-flow in the natural "carbon cycle"
- Only 30-35% of the chemical energy content associated with anthropogenic CO₂ emissions is converted into various forms of energy.
- 65-75% is lost as heat to the Earth's atmosphere.

http://www.telegraph.co.uk/earth/earthnews/5257162/Power-plants-could-store-carbon-dioxide-under-North-Sea.html

Carbon Dioxide as a Chemical Feedstock

- What is the motivation for producing chemicals from CO₂?
 - CO₂ is an inexpensive, non-flammable, non-toxic feedstock that is stable, easy to store, and readily available.
 - It can be used to replace toxic chemicals such as phosgene and isocyanates.
 - CO₂ is a renewable resource, as compared to oil or coal; the future supply of fossil fuels is considered limited.
 - The use of CO₂ in new routes to existing chemical intermediates and products could be more efficient and economical than current technologies.
 - The production of chemicals from CO₂ could have a small but likely significant positive impact on the global carbon balance.
 - CO₂ is an exceptionally inexpensive source of carbon, at ~0.1 ¢/mol.
 - For comparison: Ethylene, ~3 ¢/mol (1.5 ¢/mol of C atoms); propylene, (~5 ¢/mol, 1.5 ¢/mol of C atoms).

Known Reactions of CO₂

Why is CO₂ capture and conversion a difficult problem?

reactions of CO₂ can be thermodynamically favorable!

90 Mt/year industrially!

Primary problem is <u>kinetic stability</u> of CO₂.

Excellent candidate for catalysis

Cyclic Carbonate is The Target Commodity Chemical

- Most common reaction of CO₂ in the recent literature
- On an industrial scale, cyclic carbonates are synthesized using Lewis acid or base catalysts involving high temperature and pressures
- Uses of cyclic carbonates
 - polar aprotic solvents, electrolytes in lithium-ion batteries, constituents of oils and paints, raw materials in the synthesis of polycarbonates and polyurethanes

Coupled system for CO₂ capture and chemical conversion

Catalyst Evaluation (Partial List)

Catalyst Evaluation (Partial List)

2-Bromoquinoline: A Challenge and A Clue

- long induction period and long reaction time (24 h)
- not suitable for continuous production
- mechanistic understanding and a new catalyst is required

Radical Pathways Are Involved

Batch Reactions:

entry	catalyst	additive	conversion (%)	yield (%)
1	5% NBS	-	74	81
2	5% NBS	dark	31	33
3	5% NBS	1 equiv GALVINOXYL	-	0
4	5% NBS	5% benzoyl peroxide	80	75

Will a related continuous process enjoy improvements over batch due to improved gas-liquid mixing (slug flew)?

Schematic of the Continuous Reactor

Continuous Conversion Reactor

Current State of the Art

- novel organocatalyst
- first demonstration of catalysis of epoxide opening by electrophilic bromine
- reaction complete in 30 min at 5 mol% catalyst loading
- superior performance under continuous slug flow conditions
- well-behaved reaction kinetics (no detectable induction period)

Scope of the Reaction

- currently limited to mono-substituted epoxides
- no reaction was observed with the following epoxides

$$CH_3$$
 CH_3 CH_3

Proposed Mechanism Based on Kinetics Investigations

key mechanistic findings

 $rate = k_{obs}[epoxide][NBS]$

zeroth order in both [CO₂] and [BPO]

solvent kinetic isotope effect $(k_H/k_D = 1.3)$

key proposals

DMF (solvent) activates both Br⁺ and CO₂

unprecedented bromo-oxonium species

Summary

Key Findings

- Electrophilic bromine sources are effective catalysts for conversion of CO₂ and epoxides into cyclic carbonates, which are valuable commodity chemicals.
- A novel mechanism of epoxide activation was discovered, and its impact may be very broad.

Lessons Learned

 Continuous processing is superior to batch and is likely to be the preferred approach in the majority of CO₂ conversion methods.

Summary

- Future Plans

- Integration with electrochemical capture systems
- Development of related reactions using electrophilic bromine catalysts
- Development of superior catalysts (amides, polypeptides) designed based on mechanistic findings.
- Engineering implementation strategy for chemical conversion of CO₂ in continuous flow reactor
- Investigation of the effect of the impact of the quality of gas streams upon the conversion

Acknowledgments

- MIT
 - Dr. Jennifer A. Kozak
 - Dr. Fritz Simeon
 - Prof. T. Alan Hatton
- Siemens (Life Cycle Analyses)
 - Dr. Elena Arvinitis
 - Dr. Noorie Rajvanshi
 - Dr. Amit Kapur
- DOE-NETL
 - Dr. Bill O'Dowd

Appendix

These slides will not be discussed during the presentation, but are mandatory

Organization Chart

Gantt Chart

Sub-			Proje			n:10/		010-		Planned	Planned	Actual	Actual	
Task	Project Milestone Description	Pi Q1	roject Q2		,	,	roject	Year Q7		Start Date:	End Date:	Start Date:	End Date:	Comments
1.1	Project management plan	√	Q2	QJ	Q.	QJ	QU	Q,	QU	10/01/10	09/30/12	10/01/10		
1.2	Project management	1	1	1	1	•	1	1		10/01/10	09/30/12	10/01/10		Submission of Q7progress report on July 30, 2012 Investigation of
2.1	Chemical reaction between bis(carbonate)s and electrophiles	1	1	1	1	•	1	•		10/01/10	03/31/11	10/01/10		organocatalyst (NBS system) for production of cyclic carbonate from cyclic oxide and CO ₂
2.2	Molecular characterization of "intermediate" complex	1	1	1	1	•	1	1		10/01/10	03/31/11	10/01/10		Investigation of organocatalyst (NBS system) for production of cyclic carbonate from cyclic oxide and CO ₂
2.3	Reaction kinetic analysis of "intermediate" complex formation			1	•	/	1	,		04/01/11	09/30/11	07/01/11		Reaction kinetic of organocatalytic process (NBS system) for cyclic carbonate production from cyclic oxide and CO ₂ Investigation of
2.4	Electrochemistry of "intermediate" complex formation			•	•					04/01/11	09/30/11	04/01/11		intermediate and "active" catalyst in organocatalytic process for cyclic carbonate production from cyclic oxide and CO ₂
2.5	Chemical sequestration with various redox-active molecules									10/01/11	03/31/12			
2.6	Computational modeling of "intermediate" complex formation									10/01/11	03/31/12			
3.1	Conceptual reactor design of integrated chemical sequestration process				,	•	,	1		01/01/11	09/30/11			Complete assemble and assessment of flow chemical reactor design for organocatalytic process. Pending electrochemical cell until the finalization of the synthetic route.
3.2	Impedance analysis of cell design and kinetics									04/01/11	09/30/11			Pending electrochemical cell until the finalization of the synthetic route.
3.3	Analysis of cell components for									10/01/11	03/31/12			ane synthetic route.

Gantt Chart (continued)

Sub- Task	Project Milectone Description		Project Duration:10/01/2010- 09/30/2011 Project Year 1 Project Year 2 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8								Planned End Date:	Actual Start Date:	Actual End Date:	Comments
3.3	Analysis of cell components for integrated chemical sequestration process									10/01/11	03/31/12			
3.4	Computer simulation of dynamic analysis									10/01/11	03/31/12			
4.1	Chemical analysis of integrated chemical sequestration									04/01/12	09/30/12			
4.2	Optimization key components of integrated chemical sequestration									04/01/12	09/30/12			
4.3	Chemical sequestration prototype unit									04/01/12	09/30/12			
5.1	Life cycle environmental analysis		1	1	1	1	1	1		10/01/11	09/30/12	03/01/11		Life cycle assessment of different scenarios.
5.2	Life cycle cost analysis							1		10/01/11	03/31/12	05/01/12		

Bibliography

Publication:

Kozak, J. A.; Simeon, F.; Hatton, T. A.; Jamison, T. F., 2012, Bromine-Catalyzed Conversion of Carbon Dioxide and Epoxides to Cyclic Carbonates under Continuous Flow Conditions, *submitted for publication*.

Conference Presentation:

Rajvanshi, N.; Arvanitis, E.; Kapur, A.; Hatton, T. A.; Jamison, T. F.; Simeon, F.; Kozak, J. A., 2012, Environmental Life Cycle Assessment of Novel CO2 Capture and Utilization Routes, LCA XII, Tacoma, Washington.