

Groundwater Monitoring to Verify Storage Permanence

Alexandra Hakala

Geosciences Division, Office of Research and Development National Energy Technology Laboratory Pittsburgh, PA

Geochemistry plays an important role in all aspects of a geological CO₂ storage system

zional University Alliance

- Monitoring techniques
 - Groundwater aquifers
 - Liability issues
 - EPA Class VI rules (also includes injection well integrity)
 - Other subsurface resources
 - Seals: Wells and Natural Rocks
 - Storage formation
 - CO₂ plume behavior
 - Long-term permeability and porosity
 - Organics with CCUS

Objective: provide a suite of natural geochemical signals to monitor leakage of CO_2 to groundwater. Ultimate objective: develop a suite of techniques that, when used alone or in combination, can indicate CO_2 losses in excess of the 99% over 100 years target.

Tracking CO₂ using stable isotope indicators

Develop methodologies to use stable isotope mass spectrometry for quantitative measurement of C, H, O, S isotopic signatures to determine their ability to signal CO₂ intrusion.

- The $\delta^{13}C_{DIC}$ can prove to be a very effective natural geochemical MVA tracer because it is very sensitive to shifts in carbonate chemistry in the reservoir.
- Samples collected from high CO₂ natural analogue sites show that the $\delta^{13}C_{DIC}$ shift towards higher values as isotopically lighter dissolved CO₂ species is lost.

Gas Bench Coupled to IRMS for $\delta^{13}C_{DIC}$ measurement

a gas source IRMS (Torres et al., 2005)

 $\delta^{13}C_{DIC}$ (blue) and dissolved CO₂ (red) trends from portal to downstream at two coal mine discharge sites in Allegheny County, PA. Note the sharp rise in $\delta^{13}C_{DIC}$ signatures as CO₂ is lost via degassing

NATIONAL ENERGY TECHNOLOGY LABORATORY

Natural Isotope tracers for quantitative MVA

Develop methodologies using the NETL Multicollector ICP-MS facility for quantitative measurement of trace element isotopic signatures to determine their ability to signal CO₂ intrusion.

Isotopes currently of interest include:

- ➤ Strontium (Sr)
- Uranium (U)
- Neodymium (Nd)
- ➢ Boron (B)
- ≻ Lithium, (Li)
- ➢ Iron (Fe) and,
- ➤ Copper (Cu).

Develop analytical techniques specific to storage fluids.

> Determine the quantitative relationship between changes in isotopic signatures and the extent of CO_2 intrusion.

Isotope systems can be useful for:

- Tracking brine migration
- Determining seal rock leakage
- Studying fluid/rock reactions
- Quantification of CO₂-water-rock signatures
 using natural strontium (Sr) isotope
 signatures
 - Sr isotope mixing models indicate admixing of up to 5% of CO₂-charged brine
 - Evidence for CO₂-induced dissolution of aquifer carbonate – decoupling of brine CO₂(aq) and exsolved CO₂(g)

NATIONAL ENERGY TECHNOLOGY LABORATORY

Stewart - Pitt; Capo - Pitt; Wall - ORISE

Point sources of trace contaminants

Characterize the distribution and speciation of EPA Drinking Water Standard contaminants in groundwater aquifer solids to provide input for reactive transport simulations

As *K*α/**Pb** *L*α1

• μ-XRF Mapping and preliminary XANES results show that As is present in multiple redox states and/or is present in different coordination environments in the oxidized aquifer system

Fe Kα

• As behaves differently in sediment + water solutions with elevated CO₂ relative to sediment + water solutions with ambient CO₂.

Development of field CO₂ measurement methods

Develop method to directly measure CO_2 in groundwater in the field.

 Over 40 natural emergent waters containing elevated CO₂ have been tested

 Gave more rapid and accurate results than traditional methods based on pH and alkalinity titration

Not sensitive to the presence of noncarbonate alkalinity

Regional University Alliance

Further field testing on deeper well waters and higher pressure samples is planned.

Beverage Carbonation Measuring Module: CarboQC

Vesper and Edenborn, "Determination of free CO₂ in emergent groundwaters using a commercial beverage carbonation meter" submitted to Journal of Hydrology

NATIONAL ENERGY TECHNOLOGY LABORATORY

Arsenopyrite precipitation and dissolution studies

Develop a comprehensive understanding of arsenopyrite reactivity in CO_2 -rich systems of varied pressure and temperture.

- As is a potential groundwater concern
 - Arsenopyrite (FeAsS) and arsenian pyrite Fe(S,As)₂, major forms of As in sedimentary rocks, (includes CO₂ reservoir seals)
- Review of existing literature during FY11
 many gaps in knowledge regarding arsenopyrite reactivity in the presence of CO₂
 - Need information for predictive models
- Development of experimental system to probe key gaps within the reaction matrix
- Coordination with Fe isotopic measurements for determining mechanisms of As release

Rezional University Alliance

NATIONAL ENERGY TECHNOLOGY LABORATORY

Use of organic compounds to track CO₂ migration from CO₂-EOR (or other storage) sites

- Which organic compounds will be relevant in geologic CO₂ storage formations and in shallow groundwaters potentially affected by CO₂?
- Which organics will be soluble in and rendered mobile by supercritical CO₂?
- Research focused on developing input for multiphase flow simulations for predicting organics migration and behavior
 - Laboratory and field-based studies
 - Use of liquid and gas phase analytical techniques
- Review article on "Partitioning Behavior of Organic Contaminants in Carbon Sequestration Environments" (Bruant, A.; Lowry, G. V.; Karamalidis, A.)

Questions?

