
NATIONAL ENERGY TECHNOLOGY LABORATORY

Carbon Storage
R&D Project Review
Meeting Developing
the Technologies
and Building the
Infrastructure for
CCUS

August 21-23, 2012

Pittsburgh, PA

Comparison of CO₂ Storage Resource Methodologies

Presenter: Angela Goodman

Team: Angela Goodman, Grant Bromhal, Brian Strazisar, Traci Rodosta and George Guthrie

United States Department of Energy, National Energy Technology Laboratory

U.S. DEPARTMENT OF ENERGY • OFFICE OF FOSSIL ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY

CARBON STORAGE PROGRAM with ARRA Projects

Infrastructure

Regional Carbon Sequestration Partnerships

Characterization

Validation

Development

ARRA: Development of Technology Transfer Centers

ARRA: Site Characterization

Other Small and Large-Scale Projects

Benefits

- · Human capital
- · Stakeholder networking
- · Regulatory policy development
- · Visualization knowledge center
- · Best practices development
- · Public outreach and education

Core R&D

Geologic Storage Tech

Simulation and Risk Assessment

Monitoring, Verification, Accounting, Assessment

CO2 Use and Reuse

NETL ORD Focus Area

ARRA: University Projects

Benefits

Technology

Lessons

Learned

Solutions

- · Reduced cost of CCS
- Tool development for risk assessment and mitigation
- Accuracy/monitoring quantified
- CO₂ capacity validation
- Indirect CO₂ storage

Global Collaborations

Technology North America Energy Working Group

Carbon Sequestration Leadership Forum

International Demonstration Projects

Canada (Weyburn, Zama, Ft. Nelson) Norway (Sleipner and Snovhit) Germany (CO2Sink), Australia (Otway) Africa (In-Salah) Asia (Ordos Basin)

Benefits

Lessons

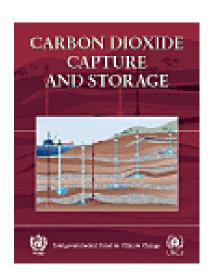
Learned

- · Knowledge building
- Project development
- Collaborative international knowledge
- Capacity/model validation
- CCS commercial deployment

Estimating CO₂ Storage in Geologic Formations

High-Level Estimates of CO₂ Storage Potential National, Regional, Basin, and Formation Scale

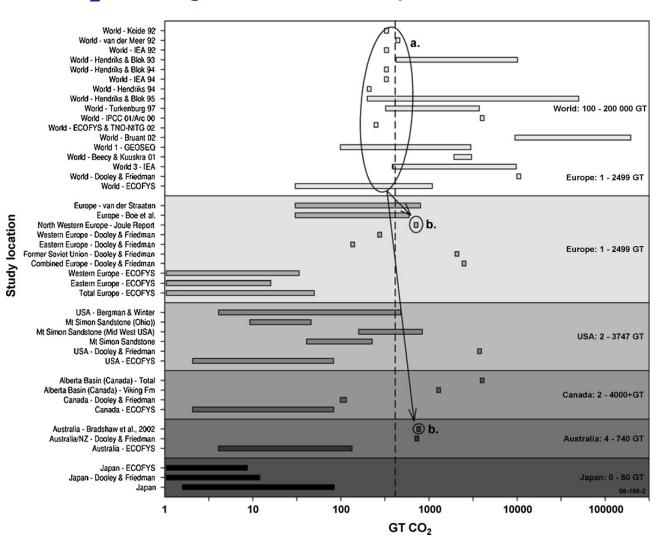
- Assess potential for CCUS technologies to reduce CO₂ emissions
- Broad energy-related government policy and business decisions.
- Identify potential regions to successfully implement CCUS technologies
- High degree of uncertainty:
 - simplifying assumptions
 - deficiency or absence of data
 - natural heterogeneity of geologic formations
 - undefined rock properties
 - scale of assessment
 - Inconsistent terminology
- Site characterization will allow for the **refinement** of high-level CO₂ storage resource estimates and development of CO₂ storage capacities.
- Until such detailed characterization can be documented, dependable highlevel CO₂ storage estimates are essential to ensure successful widespread deployment of CCUS technologies


Existing CO₂ Storage Estimates

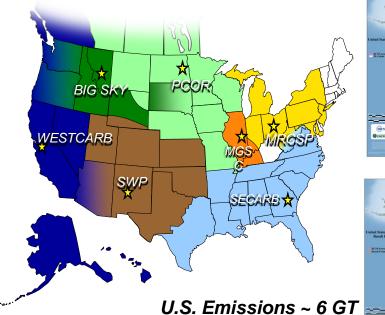
Intergovernmental Panel on Climate Change, 2005

Table 5.2 Storage capacity for several geological storage options. The storage capacity includes storage options that are not economical.

Reservoir type	Lower estimate of storage capacity (GtCO ₂)	Upper estimate of storage capacity (GtCO ₂)	
Oil and gas fields	675*	900*	
Unminable coal seams (ECBM)	3-15	200	
Deep saline formations	1000	Uncertain, but possibly 104	


^{*} These numbers would increase by 25% if "undiscovered" oil and gas fields were included in this assessment.

Existing CO₂ Storage Estimates


Inconsistent CO₂ Storage Estimates up to 2006

- Highly variable and contradictory
- Compiled in 2007
 by Bradshaw et al.
 IJGGC (2007) 62 68 CO2 Storage
 Capacity
 Estimation: Issues
 and Development of
 Standards

Atlas I - March 2007 Atlas II - November 2008 Atlas III - November 2010 Atlas IV - November 2012

State State Basis

10 Augustum hous

Control State State

Control State State State

Control State State

Organic-Rich Shale

Basalt Formations

Distributed by:

- Hard-copy: CCUS Atlas of the United States and Canada
- Peer-reviewed Journal: Int. J. Greenhouse Gas Control 5 (2011) 952-965
- Web-served geographic information system: NATCARB

Oil and Gas Fields 143-155 GT CO₂ Storage Resource

CO₂/yr (all sources)

Saline Formations 1,653 - 20,213 GT CO₂ Storage Resource

Unmineable Coal Seams 60-117 GT CO₂ Storage Resource

Examples of Recent CO₂ Storage Estimates (post 2007) North American Carbon Atlas Partnership

First coordinated effort between Canada, Mexico, and the United States to jointly publish a resource of data and information on CCS technologies, pressing issues, and current progress toward solutions

NACAP's Objective:

 Identify, gather, and share data of CO₂ sources and geologic storage potential

- Development of this GIS-based CO₂ sources and storage database
- 3 North American Products (April 2012):
 - NACSA website (http://www.nacsap.org/) –
 online version of NACSA, links to resources (English, Spanish, and French)

CO ₂ Sto	orage Resources Esti	mates for Saline F	ormations in Nor	th America (Gigat	tonnes)
	Car	Canada		United States	
	Low Estimate	High Estimate	Low Estimate	Low Estimate	High Estimate
Total	28	296	100	1,610	20,155

Estimation of CO₂ Aquifer Storage
 Potential in Japan Takahashi et al. Energy
 Procedia 1 (2009) 2631-2638

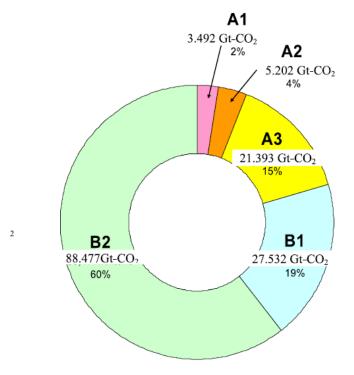


Figure-2 Comparison of estimated CO₂ storage capacity for each storage category in J

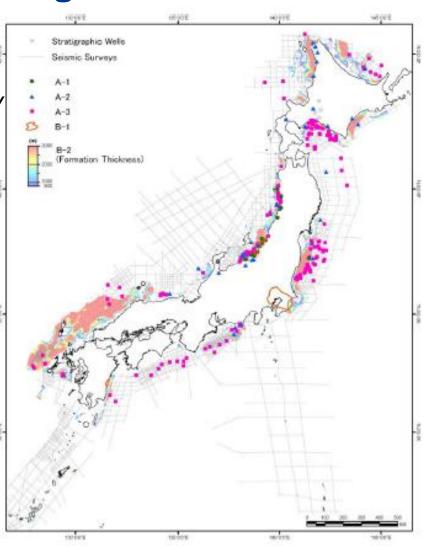


Figure 3 Distribution map of CO2 storage capacity for each storage category in Japan

Table 1 Basins and the estimated storage capacity and storage capacity classification

Basin/hydrocarbon prospect	Capacity classification	Quantified storage capacity Mt
Kinsale Gas Field	Practical	330
South West Kinsale Gas Field	Practical	5
Spanish Point Gas field	Practical	120
East Irish Sea oil and Gas fields	Practical	1,050
Portpatrick Basin Sherwood Sandstone selected structures	Effective	37
Central Irish Sea Sherwood Sandstone structures	Effective	630
Lough Neagh Basin Enler Group selected structures	Effective	1940
East Irish Sea Basin Ormskirk structures	Effective	630
Kish Bank Basin Sherwood sandstone structures	Effective	270
Celtic Sea - 1 structure in the Cretaceous A sand	Theoretical	40
Portpatrick Basin/ Larne whole basin	Theoretical	2,700
Peel Basin Sherwood Sandstone whole basin	Theoretical	68,000
Northwest Carboniferous Dowra Basin whole basin	Theoretical	730
Central Irish Sea whole basin	Theoretical	17,300
Kish Bank Basin Carboniferous sandstone and coal	Theoretical / un-quantified	
Rathlin Basin Sherwood Sandstone, Permian and Carboniferous	Theoretical / un-quantified	
Celtic Sea Cretaceous A sand	Theoretical / un-quantified	
Porcupine Basin	Theoretical / un-quantified	
Slyne/Erris Basins	Theoretical / un-quantified	
Clare Basin	Theoretical / un-quantified	
Rockall Trough	Theoretical / un-quantified	
Gas prospects	Theoretical / un-quantified	
Other onshore basins	Theoretical / un-quantified	
Total storage capacity (million tonnes CO ₂)		93,782

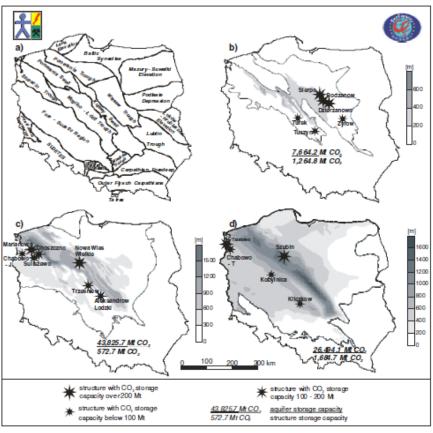
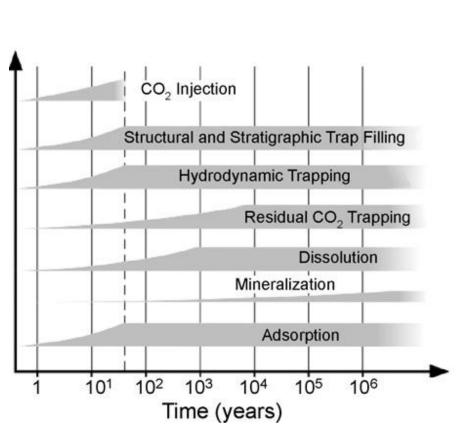

 Assessment of potential for geological storage of carbon dioxide in Ireland and Northern Ireland Lewis et al. Energy Procedia 1 (2009) 2655-2622

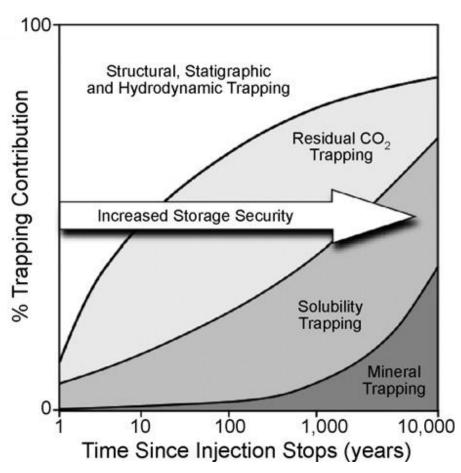
Figure 1 All-island Ireland sedimentary basins examined for this study

Table 1. CO₂ storage capacity in the Lower Cretaceous, Lower Jurassic and Lower Triassic aquifers and parameters used for calculation

Formation	Area [km²]	Porosity [%]	Net gross ratio [%]	$\rho_{CO2}[kg/m^3]$	Storage capacity [Mt]
Lower Cretaceous	24,562.0	20.5	40	800	7,646.9
Lower Jurassic	70,106.0	17.3	60	700	43,825.7
Lower Triassic	112,036.0	9.7	70	600	26,494.1


Deep aquifers and geological structures suitable for CO₂ storage

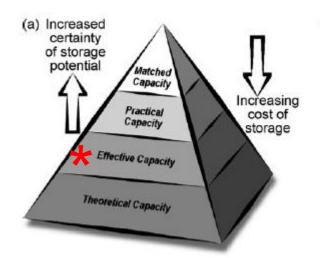
 CO₂ Storage Capacity of Deep Aquifers and Hydrocarbon Fields in Poland – EU GeoCapacity Project Results Radoslaw et al. Energy Procedia 1 (2009) 2671-2677


Time Dependency of Trapping Mechanisms Involved in CO₂ Geological Storage

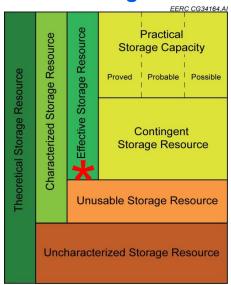
Operating Time Frame

Storage Security

Bachu et al. Int. J. Greenhouse Gas Control 1 (2007) 430-443


CO₂ Storage Classification

2010 DOE Storage Resource Estimates


Petroleum Industry	CO ₂ Geological Storage	
Reserves	u	Capacity
On Production	tatio	Active Injection
Approved for Development	mplementation	Approved for Development
Justified for Development	lmp	Justified for Development
Contingent Resources	ation	Contingent Storage Resources
Development Pending	teriza	Development Pending
Development Unclarified or On Hold	Characterization	Development Unclarified or On Hold
Development Not Viable	Site (Development Not Viable
Prospective Resources	nc	Prospective Storage Resources
Prospect	Exploration	Qualified Site(s)
Lead	Expl	Selected Areas
Play		Potential Sub-Regions

	Prospective Storage Resources			
Explorat	Project Sub-class	Evaluation Process		
	Qualified Site(s)	Initial Characterization		
	Selected Areas	Site Selection		
	Potential Sub-Regions	Site Screening		

CSLF Techno-Economic Resource Pyramid

IEA-GHG Storage Classification

NATIONAL ENERGY TECHNOLOGY LABORATORY

Comparison of CO₂ Storage Methodologies for Saline Formations

- **2010 Atlas** presents national scale CO₂ storage resource estimates of how much CO₂ can be stored in deep brine-filled formations
- How do other CO₂ storage estimates compare for **different methodologies**?

Carbon Sequestration

Trapping Mechanisms Considered?

- Scale
 - Country?
 - Basin?

MC MF

- Regional?

Site Speci	Site Specific?					
10 CO2 Resource Estimates by Partnership						
	Saline Fo	Saline Formations				
	Low	High				
	Billion Metric	Billion Metric				
	Tons of CO ₂	Tons of CO ₂				
g Sky	221	3,041				
GSC	12	160				
RCSP	46	183				
COR	165	165				
ECARB	RB 908 12,527					
NP	219	3,013				
ESTCARB	82	1,124				
otal	1,653	20,213				

Saline Formations 1,653 - 20,213 GT CO₂ Storage Resource

NATIONAL ENESGY TECHNOLOGY LABOSATOSY

CO₂ Storage Methodologies for Open and Closed Systems

CSLF: Bachu et al. 2007

Carbon Sequestration Leadership Forum [2007, 2008]

Methodology developed through the CSLF Technical Group Taskforce on CO₂ storage estimates is intended for external users

DOE-NETL Atlas I, II, III U.S. DOE / NETL [2007, 2008, 2010]

 Methodology developed by the DOE/NETL is intended for external users such as the Regional Carbon Sequestration Partnerships in high-level assessments of (2007, 2008, 2010) potential CO₂ storage reservoirs in the US and Canada.

USGS: Brennan et al. (2010)

U.S. Geological Survey [2009, 2010]

 Methodology developed by the USGS is intended to be used by the USGS's geologists for assessments at scales ranging from regional to sub-basinal in which storage assessment units are defined on the basis of common geologic and hydrologic characteristics.

CGSS: Spencer et al. (2010)

CO₂ Geological Storage Solutions [2010]

• Methodology developed for the 2009 Queensland CO₂ Geological Storage Atlas is intended for policy makers

Szulczewski et al. (2012)

 Lifetime of Carbon Capture and Storage as A Climate-Change Mitigation Technology [2009, 2012]

 Methodology to account for fluid dynamics and injection-rate constraints for CO₂ storage

Zhou et al. (2008)

- A Method for Quick Assessment of CO₂ Storage Capacity in Closed and **Semi-closed Saline Formations [2008]**
- Methodology for quick assessment of CO₂ storage in closed saline formation

Closed

CSLF Effective Storage Capacity

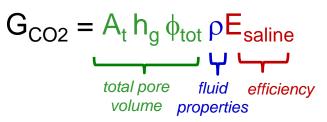
- Stems from the Technical Group Taskforce on CO₂ storage estimates led by the Carbon Sequestration Leadership Forum.
- Effective Storage Capacity, called previously "Realistic Capacity" represents a subset of the theoretical capacity and is obtained by applying a range of technical (geological and engineering) cut-off limits to a storage capacity assessment, including consideration of that part of theoretical storage capacity that can actually be physically accessed (structural and stratigraphic trapping). This estimate usually changes with the acquisition of new data and/or knowledge. Bachu et al. Int. J. Greenhouse Gas Control 1 (2007) 430-443
- Open boundaries / formation scale

 $M_{CO2} = Ah\phi(1-S_{wirr})\rho_{CO2}C_c$

IEA-GHG 2010 Saline Capacity Coefficients for the Formation Level

Table 15. P10, P50, and P90 Storage Coefficients Calculated E_E and $C_C*(1-S_{wirr})$ for the Formation Level for Different Lithologies

Lithology	P10, %	P50, %	P90, %
Clastics	1.86	2.70	6.00
Dolomite	2.58	3.26	5.54
Limestone	1.41	2.04	3.27
All	1.66	2.63	5.13


IEA, 2009/13. Development of Storage Coefficients for CO2 Storage in Deep Saline Formations, IEA Green house Gas R&D Programme (IEA GHG) October.

Gorecki, C.D., Sorensen, J.A., Bremer, J.M., Knudsen, D.J., Smith, S.A., Steadman, E.N., Harju, J.A., 2009. Development of storage coefficients for determining the effective CO2 storage resource in deep saline formations, Society of Petroleum Engineers International Conference on CO2 Capture, Storage, and Utilization. PE 126444-MS-P., San Diego, California.

U.S. DOE / NETL CO₂ Storage Resource Estimates

Volumetric Approach

Saline Formation CO₂ Storage Resource Estimates

Parameter	Units*	Description
G_{CO2}	M	Mass estimate of saline formation CO ₂ storage resource.
A_{t}	L^2	Geographical area that defines the basin or region being assessed for CO ₂ storage.
h_{g}	L	Gross thickness of saline formations for which CO ₂ storage is assessed within the basin or region defined by A.
ϕ_{tot}	L^3/L^3	Total porosity in volume defined by the net thickness.
ρ	M/L^3	Density of CO_2 evaluated at pressure and temperature that represents storage conditions anticipated for a specific geologic unit averaged over $h_{\rm g}$ and $A_{\rm t}$.
E _{saline}	L^3/L^3	CO ₂ storage efficiency factor that reflects a fraction of the total pore volume that is filled by CO ₂ .

^{*} L is length; M is mass

Goodman, A., A. Hakala, et al. (2011). "U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale." <u>International Journal of Greenhouse Gas</u> Control **5**: 952–965.

CO₂ Storage Resource Estimates

- Available pore volume of a given formation that is accessible to CO₂ injected through drilled and completed wellbores
- Only physical trapping of CO₂ is considered – structural and hydrodynamic trapping mechanisms
- Open boundaries / regional scale

ATLAS 2010 Saline Efficiency

Saline Formation Efficiency Factors							
For Geologic and Displacement Terms							
$E_{\text{saline}} = E$	E _{An/At} E _{hn/h}	$_{g}E_{\phi e/\phi tot}E_{v}$	$_{d}E_{d}$				
Lithology							
Clastics	0.51%	2.0%	5.4%				
Dolomite	0.64%	2.2%	5.5%				
Limestone	0.40%	1.5%	4.1%				

CSLF and DOE-NETL Methodology

- Methods presented by CSLF (2007) and DOE (2007, 2008, 2010) are the same method (Gorecki et al., 2009)
- Any storage volume estimated with one method can be compared to the other, as long as the assumptions made are the same (Gorecki et al., 2009)

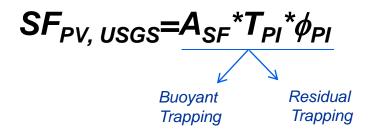
Gorecki, C.D., J.A. Sorensen, J.M. Bremer, S.C. Ayash, D.J. Knudsen, Y.I. Holubnyak, S.A. Smith, E.N. Steadman and J.A. Harju, 2009, Development of Storage Coefficients for Carbon Dioxide Storage in Deep Saline Formations, IEA Greenhouse Gas R&D Programme Technical Study 2009/13.

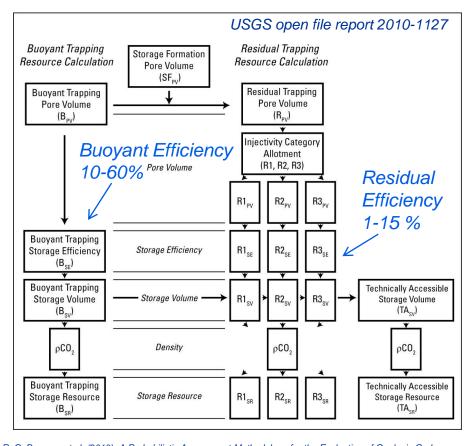
$$V_{CO_2,DOE_E} = A * h * \phi * E_E$$

$$V_{CO_2,CSLF_E} = A * h * \phi * (1 - S_{wirr}) * C_C$$

$$E_E = C_C * (1 - S_{wirr})$$

$$V_{CO_2,DOE_E} = V_{CO_2,CSLF_E}$$

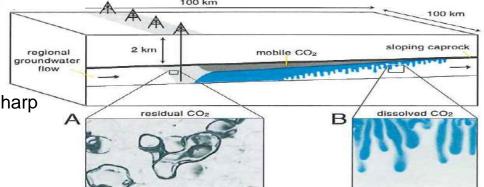




EERC Technology... Putting Research into Practice

USGS Technically Accessible Storage Resource Estimate

- Stems from 2007 Energy Independence and Security Act (Public Law 110-140)
- The technically accessible storage resource is defined as the mass of CO₂ that can be stored in the pore volume of the storage formation taking into account present-day geologic knowledge and engineering practice and experience.
- Open boundaries / regional to sub-basinal scale
- CO₂ storage is divided into buoyant and residual trapping with classes based on permeability


Brennan, S. T., R. C. Burruss, et al. (2010). A Probabilistic Assessment Methodology for the Evaluation of Geologic Carbon Dioxide Storage, U.S. Geological Survey: 1-31 report 2010-1127.

Injectivity Classification Section		Residual Trapping Efficiency			
Class 1	permeability greater than 1 Darcy	Efficiency	1	5	7
Class 2	permeability between 0.001 Darcy to 1 Darcy	Efficiency	1	7	15
Class 3	permeability less than 1 mDarcy	Efficiency	0	0	7

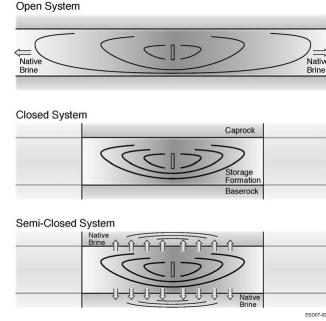
Szulczewski et al. (2012) Migration-limited Capacity

Lifetime of carbon capture and storage as a climate-change mitigation technology

- Migration-limited Capacity: injected volume in which the CO₂ plume will reach the boundary
 of the aquifer and become completely trapped by residual and solubility trapping
- Pressure-limited Capacity: limitations due to injection rate
- Methodology considers residual trapping, in which zones of CO₂ become immobilized by capillary forces and solubility trapping, in which CO₂ dissolves into the groundwater at the basin scale / open and closed boundaries
- $C_t = \rho_g L_T WH\phi (1-S_{wc})^2/\epsilon_t$
 - The major assumptions in the model are:
- (1) the interface between the CO₂ and brine is sharp
- (2) capillary pressure effects are negligible
- (3) the flow is predominantly horizontal (Dupuit approximation)
- (4) CO₂ leakage through the caprock is negligible
- (5) the aquifer is homogeneous, isotropic, and incompressible
- (6) the fluids are incompressible and their properties are constant
- (7) during the dissolution of CO₂ into brine, the total fluid volume is conserved.

Szulczewski, M., C. W. MacMinn, et al. (2012). "Lifetime of carbon capture and storage as a climate-change mitigation technology." Proceedings of the National Academy of Sciences of the United States of America

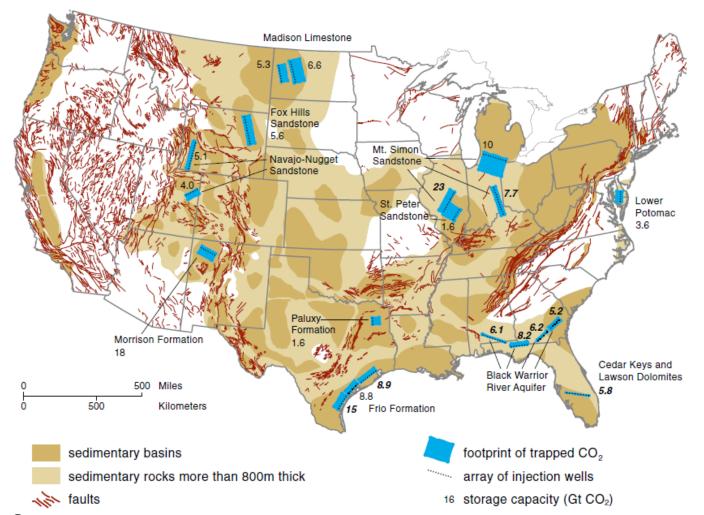
Zhou et al. (2008)


A method for quick assessment of CO₂ storage capacity in closed and semi-closed saline formations

- CO₂ injection into these systems will lead pressure buildup, because an additional volume of fluid needs to be stored
- Injected CO₂ displaces an equivalent volume of native brine, which may either (1) be stored in the expanded pore space due to compression of the rock, (2) be stored in the expanded pore space in the seals, and 3) leakage of brine (closed boundaries)
- Provide CO₂ storage estimates at early stages of site selection and characterization, when (1) quick assessments of multiple sites may be needed and (2) site characterization data is sparse

$$\begin{aligned} MCO_2(t_l) &= (B_p + B_w) \; \Delta p(t_l) \; \rho \; V_f \\ &= (B_p + B_w) \; \Delta p(t_l) \; \rho \; A \; b \; \phi \end{aligned}$$

- maximum storage capacity for a given sustainable pressure buildup, Δp_{max} . (maximum pressure that the formation can sustain without geomechanical damage)
- Treated all parameters stochastically


Zhou, Q., J. T. Birkholzer, et al. (2008). "A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formation." <u>International Journal of Greenhouse Gas Control</u> **2**: 626-639.

Description of Saline Formation Data Set

10 U.S. Saline Formations characterized by Szulczewski et al. (2012)

Mt. Simon, Black Warrior River, Frio, Madison, Navajo-Nugget, Morrison, Potomac, Fox Hills, Paluxy, St. Peter

Criteria:

- (i) The depth must exceed 800 m so that CO_2 is stored efficiently as a high-density, supercritical fluid:
- (ii) the aquifer and caprock must be laterally continuous over long distances;
- (iii) there must be very few faults that could serve as leakage pathways

Assumption:

(i) cap rock is linear to ensure no structural trapping, (trapped at the top of an anticline or in a tilted fault block)

(21)

Saline Storage Formations

Example saline formation data set by Szulczewski et al. (2012)

Table S9: Parameters for Region a of the Frio Formation.

Parameter	Symbol	Value	Data Source	Reference
Residual CO ₂ saturation	S_{rq}	0.3	estimated	[40, 51]
Connate water saturation	S_{wc}	0.4	estimated	[40, 51]
Endpoint relative permeability to CO ₂	k_{rg}^*	0.6	estimated	[40, 51]
Coefficient of CO ₂ -saturated-brine flux	α	0.01	estimated	[52, 53]
Compressibility (GPa ⁻¹)	c	0.1	estimated	[30, Table C1]
Undrained Poisson ratio	ν	0.3	estimated	[30, Table C1]
Geothermal gradient (°C/km)	G_T	30	aquifer data	[54, 55]
Surface temperature (°C)	T_s	20	aquifer data	[56]
Depth to top of aquifer (m)	D	1000	aquifer data	[47, Map c1fric
Depth from aquifer to bedrock (m)	B	10000	aquifer data	[75]
Net aquifer thickness (m)	H	2000	aquifer data	[47, Map c3fric
Length of model domain (km)	L_T	50	aquifer data	Fig. S10
Length of pressure domain (km)	L_{pres}	100	aquifer data	Fig. S10
Width of well array (km)	W	100	aquifer data	Fig. S10
Porosity	ϕ	0.2	aquifer data	[76, Fig.10]
Caprock slope (degrees)	ϑ	2	calculated	[72, Fig.2]
Darcy velocity (cm/yr)	U	10 ^a	calculated	[77]
Aquifer permeability (mD)	k_{aq}	400	aquifer data	[76, Fig.8]
Mean vertical permeability (mD)	k_{cap}	0.01	estimated	[36–38]
Lateral overburden permeability (mD)	\overline{k}_x	200	calculated	Fig. S4
Vertical overburden permeability (mD)	\overline{k}_z	0.02	calculated	Fig. S4
Salinity (g/L)	s	50	aquifer data	[78, Fig.2A]
CO ₂ solubility (volume fraction)	χ_v	0.07	calculated	[25]
Brine density (kg/m ³)	$ ho_w$	1000	calculated	[24]
CO ₂ density (kg/m ³)	ρ_q	500	calculated	[22]
Brine density change from diss. (kg/m ³)	Δho_d	8	calculated	[28, 59]
Brine viscosity (mPa s)	$\mu_{m{w}}$	0.8	calculated	[24]
CO ₂ viscosity (mPa s)	$\mu_{m{g}}$	0.04	calculated	[22]
Fracture pressure (MPa)	P_{frac}	20	calculated	Eq. S29,S28

^a We set the Darcy velocity to 10 cm/yr based on reported ranges for the velocity [77] and velocity deep saline aquifers.

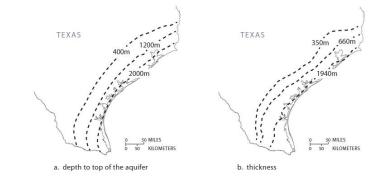
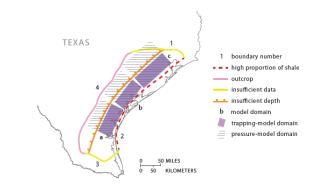
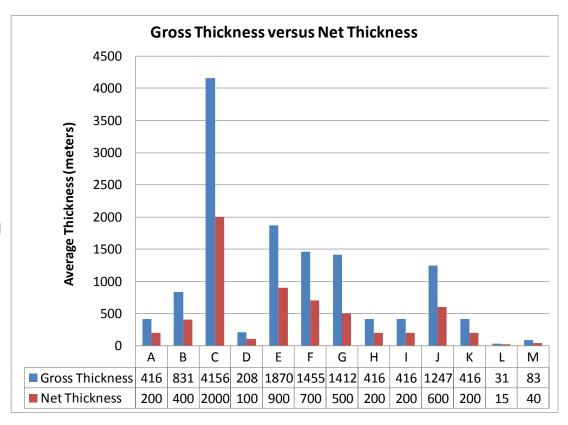
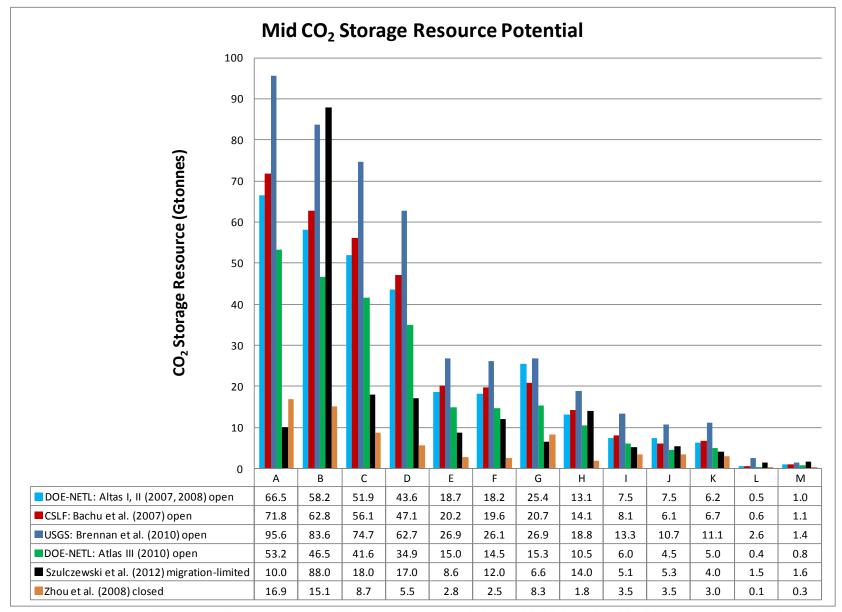
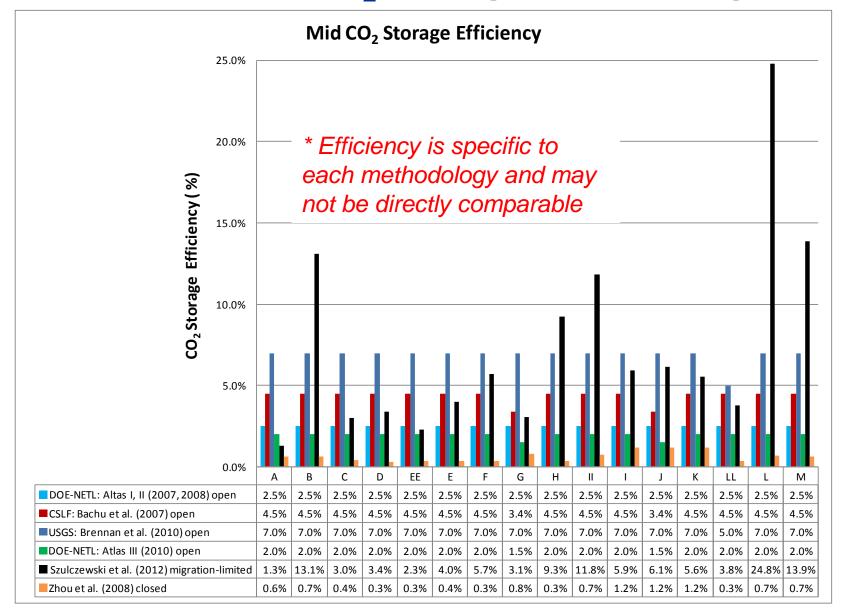


Figure S9: The Frio Formation is located on the east coast of Texas. It dips and thickens toward the coast. (a) Modified from [47, Map c1friog1]. (b) Modified from [47, Map c4friog].


Figure S10: We identify four boundaries that constrain the portion of the Frio Formation that is suitable for sequestration. Boundaries 1 and 3 correspond to the edges of available depth and thickness maps [47]. Boundary 2 corresponds to where the proportion of shale in the formation becomes greater than 80% [47, Map 5frio]. Boundary 4 corresponds to outcrops [47]. Within these boundaries, we identify three regions in which to apply our models (Regions a, b, and c).

- Used select data and formations from Szulczewski, 2012: net aquifer thickness (H), length of trapping-model domain (L_T), width of well array (W), porosity (ϕ), CO_2 density (ρ_g), connate water saturation (S_{wc}), aquifer permeability (k_{aq}), surface temperature (T_s), temperature gradient (G_T), depth to the top of the aquifer (D), brine density (ρ_w ,), and salinity (s).
- Estimated gross thickness by dividing the net thickness, by a net-to gross thickness efficiency term [0.48 for clastics, 0.41 for dolomite, and 0.35 for limestone formations]
- Pore compressibility set to range between 1x10⁻¹⁰ and 5x10⁻¹⁰ Pa⁻¹.
- Brine compressibility directly calculated as described by Battistelli et al. 1997.
- Excluded formations that were less than 10,000 ppm TDS

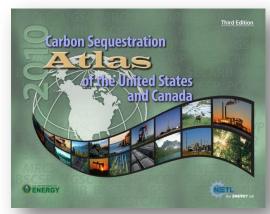
- Apply uniform input parameters for each method
 - Consistently applied inputs for length, width, porosity, and CO₂ density
- Gross or net thickness was applied as prescribed by the methodology
- Each methodology required the use of a specific efficiency
 - gauges the fraction of the accessible pore volume that will be occupied by the injected CO₂.
 - based on lithology or rock permeability class
 - calculated for each individual formation
 - CO₂ trapping mechanisms
 - Structural [not considered in data input model] CSLF: Bachu et al. (2007), DOE-NETL Atlas I, II, III (2007, 2008, 2010), USGS: Brennan et al. (2010), Zhou et al. (2008)
 - Hydrodynamic (CSLF: Bachu et al. (2007), Zhou et al. (2008), DOE-NETL Atlas I, II, III (2007, 2008, 2010)
 - Residual (Szulczewski et al. (2012), USGS: Brennan et al. (2010)
 - Solubility (Szulczewski et al. (2012)

General trends:

- All six methodologies fell within two standard deviations of the mean of an arithmetic averaging estimator for all 13 locations
- The method by Zhou et al. (2008), typically, reports the lowest estimates
- The method by <u>USGS</u>: <u>Brennan et al. (2010)</u>, typically, reports the <u>highest estimates</u>
- In most cases, the migration-limited estimates by <u>Szulczewski et al. (2012)</u> are similar to the closed estimates provided by <u>Zhou et al. (2008)</u> (*Szulczweski et al (2012) pressure-limited estimates are directly comparable to Zhou et al. (2008)*)
- The estimates by <u>DOE-NETL Atlas I, II, III (2007, 2008, 2010)</u>, <u>CSLF: Bachu et al. (2007)</u> fall between the estimates by <u>USGS: Brennan et al. (2010)</u> and <u>Zhou et al. (2008)</u> and are within <u>one standard deviation</u> of the mean of an arithmetic averaging estimator for all 13 locations.

Summary:

- Applied several different resource estimation methodologies to uniform data set
- As is typical for these types of estimates currently for carbon storage in saline fields, the data sets were very sparse.
- Open system methodologies gave median results that were well within the uncertainty bounds of the others
 - high degree of confidence that the methodologies are reasonable and that the results can be used by decision-makers.
- Closed system estimates were consistently lower than those of the open system methodologies, but the estimated values from the closed system were also mostly well within the uncertainty bounds of the open system estimates.



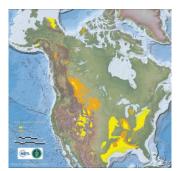
Summary

- High-level assessments of potential CO₂ storage reservoirs in the United States and Canada at the regional and national scale.
- Geologic formations:

oil and gas reservoirs unmineable coal seams organic-rich shale basins saline formations basalt formations



International Journal of Greenhouse Gas Control 5: 952-965.


- Based on physically accessible pore volume without consideration of regulatory or economic constraints.
- Used for broad energy-related government policy and business decisions

Oil and Gas Fields

Saline Formations

Unmineable Coal Seams

Basalt Formations

Organic-Rich Shale

Acknowledgments

The authors would also like to thank John Litynski, Strategic Center for Coal, Carbon Storage, United States Department of Energy, National Energy Technology Laboratory; Stefan Bachu, CO₂ Storage Alberta Innovates – Technology Futures, Edmonton, AB, Canada; Sean Brennan, U.S. Geological Survey, Reston, Virginia; Ruben Juanes, Civil and Environmental Engineering and Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, MA; Michael Szulczewski, Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA; Quanlin Zhou, Lawrence Berkeley National Laboratory (LBNL), Earth Sciences Division, Berkeley, CA; Scott Frailey, Illinois State Geologic Survey, Midwest Geological Sequestration Consortium; and Charlie Gorecki, Energy & Environmental Research Center (EERC), University of North Dakota for reviewing calculations and helpful discussions.