Assessing Factors Influencing CO₂ Storage Capacity and Injectivity in Eastern Gas Shales

Contract No. DE-FE0004633

Michael Godec, Vice President Advanced Resources International

mgodec@adv-res.com

U.S. Department of Energy

National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 21-23, 2012

Presentation Outline

- Program Benefits
- Goals and Objectives
- Technical Status
- Accomplishments to Date
- Summary
- Appendix

Benefits to the Program

Program Goals Addressed

- Develop technologies that will support industries' ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.
- Develop technologies to demonstrate that 99 percent of injected CO₂ remains in the injection zones.

Project Benefits

- More secure storage, since most of the injected CO₂ will re-adsorb on the shales following the desorption of methane, providing a potentially more secure CO₂ storage option than merely injecting CO₂ into saline aquifer formations
- Ability to more cost-effectively geologically store CO₂, since revenues from gas production can offset, at least to some extent, the costs of storage
- Utilization of a very large capacity storage option in a region of the country with a large concentration of large CO₂ emission sources, particularly coal-fired power plants, but where finding other suitable geologic sites for CO₂ storage is proving to be challenging.

Goals and Objectives

- Acquire, analyze, and synthesize data on reservoir properties for selected eastern gas shales -- through collaboration with state geological surveys, universities, and operators -- to help guide efforts in site assessment and selection.
- Develop better understanding of shale characteristics impacting sealing integrity, storage capacity, and injectivity.
- Verify this understanding through a targeted, highly monitored, small-scale CO₂ injection test.
- Test a new technology for monitoring the movement and fate of CO₂ in gas shales -- a smart particle early warning concept.
- Characterize potential constraints to economic CO₂ storage in gas shales, as a function of specific shale characteristics.
- Develop an updated characterization of the CO₂ storage capacity and injectivity of selected eastern shales, focusing on reservoir characteristics affecting CO₂ storage capacity and injectivity.

Stratigraphic Correlation Chart for the Marcellus Shale

			New York	Penns	ylvania	West Virginia	Eastern Ohio	
ſ	Upper Devonian	West Falls Group	West Falls Fm/ Rhinestreet Shale	Brallier Fm./ Rhinestreet Shale Harrel Fm./ Middlesex Shale Geneseo/ Burkett Sh		Rhinestreet Shale	West Falls Fm/	
		Sonyea Group	Middlesex Shale			Cashaqua Sh./ Middlesex Sh.	Rhinestreet Shale	
		Genesee Group	Geneseo Shale			Burkett Shale		
	MIDDLE DEVONIAN	Hamilton Group	Tully Limestone	Tully Limestone		Unnamed Limestone		
l			Moscow Shale (Tichenor LS)	Hamilton Group	Ë	Hamilton Group, undivided	Hamilton Group, undivided	
l			Ludlowville Shale (Centerfield LS)		Mahantango Fm.			
l			Skaneateles Shale			Mahantango Formation		
ı			Stafford LS	Stafford LS				
			Oatka Creek Shale		⁄larcellus			Marcellus
			Cherry Valley LS	Purcell & Cherry Valley LS		Marcellus Shale	Marcellus Shale	Shale Target
l			Union Springs Shale	Lower Marcellus				Formation
ſ	Lower Devonian	Tri States Group	Onondaga	Onondaga LS Huntersville Chert/ Needmore Shale		Onongaga LS/ Huntersville Chert		
			Limestone			Needmore Sh	Onondaga LS	
			Oriskany Sandstone		iskany ndstone	Oriskany Sandstone	Oriskany Sandstone	

Sources: New York State Museum, Ohio Geological Survey, Pennsylvania Department of Conservation and Natural Resources, United States Geological Survey, West Virginia Geological Survey.

Methodology for Assessing CO₂ Storage Potential in Marcellus

- Objective is to estimate theoretical methane gas in-place and maximum CO₂ storage capacity within the study area at depths to the organic-rich lower Marcellus > 3,000 ft.
- Theoretical maximum CO₂ storage assumes 100% of calculated methane in-place, both as adsorbed and non-adsorbed 'free' gas, is replaced by injected CO₂.
 - Clearly, not all of this pore space will ultimately be accessible
 - Accessible storage capacity will be determined in subsequent analyses
- Data set includes:
 - digital well logs for 122 study wells
 - New York State Museum TOC data for core, cuttings and outcrop
 - CH₄ and CO₂ adsorption isotherms from three New York wells.

Methodology for Assessing CO₂ Storage Potential in Marcellus (cont.)

- Marcellus attributes calculated from digital logs wells:
 - Vertical thickness
 - Total organic carbon, TOC
 - Gamma-ray and/or density log 'cut-off' to estimate the organic-rich shale 'pay' zone for adsorption of methane and CO₂
 - Adsorbed methane gas in-place in Mcf/ acre-ft., and total adsorbed methane in-place in Bcf/ sq. mile, as well as theoretical maximum CO₂ storage capacity by adsorption.
 - Density porosity (corrected for TOC content)
 - Effective (gas-filled) pore volume, (which assumes water saturation calculated using a Simandoux algorithm, is immobile)
 - Estimated 'free' (non-adsorbed) methane gas in-place
 - Theoretical maximum CO₂ storage capacity as 'free' gas (non-adsorbed).
- Adsorbed CH₄ and CO₂ calculated using Langmuir coefficients based on the available isotherm data and estimated T & P based on depth.
- Pressure gradient was based on a map of Marcellus reservoir pressure gradients, so that over-pressured areas can be incorporated

Maximum Non-Adsorbed (Free) CO₂ Storage Capacity for Marcellus, Bcf/ sq. mile

Lower Marcellus, Adsorbed Gas in-Place, Bcf/ sq. mile

Estimated Total Gas In-Place and Maximum CO₂ Storage Capacity for Marcellus Study Area for Depth > 3,000 ft.

Estimated Gas In-Place and Theoretical Maximum CO ₂ Storage Capacity for Marcellus in Eastern Gas Shale Study Area	New York	Pennsylvania	West Virginia	Ohio	Maryland	Total Study Area
Potential CO ₂ Storage Area (depth>3,000 ft; R ₆ >1.0), acres	3,438,253	14,285,088	10,571,010	753,333	508,290	29,555,973
Potential CO ₂ Storage Area (depth>3,000 ft; R ₆ >1.0), mile ²	5,372	22,320	18,517	1,177	794	46,181
Adsorbed Gas In-Place, Bcf	157,968	793,415	286,080	12,338	6,141	1,255,942
Non-Adsorbe d Gas In-Place , Bcf	555,997	2,500,671	539,538	14,889	11,595	3,622,689
Total Gas In-Place, Tcf	714	3,294	826	27	18	4,879
			l .			
Maximum CO ₂ Storage, Adsorbed, Bcf	481,282	2,323,259	848,400	36,706	19,061	3,688,707
Maximum CO ₂ Storage, Non-Adsorbed, Bdf	294,887	1,199,064	280,451	6,885	5,401	1,766,467
Total CO₂ Storage Capacity, Tcf	756	3,522	1,109	44	24	5,455

Sources of Uncertainty Re Gas in-Place and CO₂ Storage Capacity Estimates

- Limited CO₂ and methane isotherm data
- Lack of access to reservoir test data and sustained production data for calibration of the reservoir simulation
- Representation of reservoir matrix and fracture properties in the reservoir simulation
 - Fracture density and spacing, fracture permeability, dominant fracture trends
- Refining and expanding this analysis needs to focus on reducing or eliminating these uncertainties
 - Acquiring additional reservoir and engineering data to improve the reservoir characterization
 - Industry input on possible development scenarios

Small-Scale CO₂ Injection Test in the Devonian Ohio Shale

- Baseline logging was completed for the field test at well in Johnson County, KY.
- Baseline logging included the reservoir saturation tool (RST), PBMS (pressure and temperature), a Spinner log, and a multi-finger caliper (PMIT) log.
- Start of the injection test planned in late August
- Up to 300 tons of CO₂ to be injected in "huff and puff"
- Two subsequent logging runs are anticipated;
 - During the test
 - After the test

CO₂ Injection Scenarios and Results

Production History Match for a Pennsylvania Horizontal Marcellus Well

Simulation Inputs

Shale Depth	5,670	ft.
Shale Thickness	125	ft.
Pay Zone Thickness	15	ft.
Matrix Permeability	100	nD
Matrix Porosity	7	%
Water Saturation	35	%
Initial Pressure Gradient	0.58	psia/ft.
CH₄ Langmuir Volume	90	scf/ton
CH ₄ Langmuir Pressure	1,000	psia
CO ₂ Langmuir Volume	172	scf/ton
CO ₂ Langmuir Pressure	416	psia

Enhanced Recovery & CO₂ Storage as Function of Distance Between Injection and Production Wells

Distance	No Injection Case (MMscf)	Injection Case (MMscf)				
Between Wells	Cum CH₄ Produced	Cum CH₄ Produced	Cum CO ₂ Injected	Cum CO ₂ Produced	Stored CO ₂	
50 ft.	6.4 (85.1%)	7.2 (95.3%)	38.6	25.5	13.1	
100 ft.	9.4 (83.0%)	10.6 (93.3%)	28.0	9.9	18.1	
150 ft.	12.2 (80.4%)	13.6 (89.5%)	25.4	3.9	21.5	
200 ft.	14.7 (77.5%)	16.1 (85.0%)	24.3	1.2	23.1	
250 ft.	16.9 (74.5%)	18.3 (80.3%)	23.6	0.2	23.4	
300 ft.	19.0 (71.5%)	20.0 (75.2%)	22.6	0.0	22.6	
400 ft.	22.4 (65.6%)	22.9 (67.1%)	21.2	0.0	21.2	
500 ft.	25.0 (60.1%)	25.3 (60.7%)	19.7	0.0	19.7	
750 ft.	29.3 (48.3%)	29.3 (48.4%)	16.6	0.0	16.6	

Smart Particle Early Warning Concept

- Conducted by researchers at Cornell University (lead: Larry Cathles)
- Objective -- develop the methods to infer the uniformity of CO₂ injection into shale based on the inter-diffusive mixing of CO₂ and methane and nanoparticle tracers.
 - Demonstrate basic principles with laboratory Hele Shaw experiments and develop nanoparticles compatible with supercritical CO₂ that could be deployed in a field demonstration.
 - Develop a streamline-based interpretive model.

Status

- Apparatus has now been constructed
- Efforts to successfully manufacture CO₂-dispersable, detectable, nanoparticles are being pursued.
- Work underway to demonstrate the use of these particles to measure the uniformity of flow in the laboratory

Accomplishments to Date

- Acquired, analyzed, and synthesized data on reservoir properties for the Marcellus and Utica gas shales
- Developed preliminary characterization of the potential theoretical maximum CO₂ storage capacity in the Marcellus Shale
 - Next step is to determine "accessible" capacity
- Performed preliminary reservoir simulation to develop better understanding of shale characteristics impacting sealing integrity, storage capacity, and injectivity.
 - To be revised based on results of small scale injection test and additional proprietary data acquired from operators
- Prepared site for small scale CO₂ injection test in KY shales, to take place in late August/early September

Summary

Key Findings

- Theoretical maximum CO₂ storage capacity in Marcellus as adsorbed CO₂ is 3,689
 Tcf, which assumes that all adsorbed methane is replaced by CO₂.
- The theoretical maximum CO₂ storage capacity as non-adsorbed CO₂ replacing methane is 1,766 Tcf, approximately half the estimated volume of free gas in-place.

Lessons Learned

 Limited CO₂ and methane isotherm data, lack of access to reservoir test and sustained production data limit ability for calibration of the reservoir simulation

Future Plans

- Complete similar assessment of the Utica Shale, including geologic characterization and reservoir simulation
- Update previous assessments based on field test results and operator data
- Conduct KY CO₂ injection test; after some delays
- Finish efforts to characterize constraints to economic CO₂ storage in gas shales.
- Update characterization of the CO₂ storage capacity and injectivity of selected eastern shales (Marcellus, Utica, Ohio)

Appendix

Project Participants

Schlumberger

Roles of Key Participants

- Advanced Resources International Overall Project Lead
 - Michael Godec -- Principal Investigator & Project Director
- NYSERDA serving in project advisory capacity, along with providing substantial financial support.
- KGS leading assessment of the Devonian Ohio shale and the small-scale injection test in KY, leveraging state funds.
- University at Buffalo characterizing the spacing, geometry and intersection field data for fractures in Marcellus shale settings.
- Cornell University investigating capability of monitoring CO₂ injection into shale through a proposed smart particle early warning concept.
- Schlumberger Carbon Services -- contributing cost-share for logging program conducted for the KY small scale CO₂ injection test

Gantt Chart

Bibliography

No peer reviewed publications have yet been generated from this project