

IEAGHG Activities in CO₂ Geological Storage

John Gale and Ludmilla Basava-Reddi IEAGHG US RCSP Meeting, Pittsburgh, PA, August 2012

www.ieaghg.org

IEAGHG Storage Portfolio

- Storage Research Networks
 - Risk Assessment
 - Monitoring
 - Modelling
 - Wellbore Integrity
 - Environmental Research
 - Joint Network Meeting, June 2012
- Study Programme
 - Reports produced 1996 2012
 - Study ideas knowledge gaps identified through research networks/ ExCo Members

Joint Storage Network Meeting Santa Fe,

- Aims before the meeting:
 - to ensure the Networks are working in the most efficient way without duplication or gaps
 - to identify cross-cutting issues and their consequences; requiring input from more than one Network
 - to set the framework for the future direction of the Networks
- Recommendations from the meeting:
 - More Network to Network collaboration
 - Virtual meetings on hot topics
 - Topic-based workshops e.g. Remediation
 - Reassessment of steering committees each year
 - Activity in between meetings
 - Interaction with Social Research Network (due to relevance to all storage networks)

Environmental Research CO₂ Storage Network– July '12, Bozeman, Montana

- Session 1: Welcome and Aims of the Meeting
- Session 2: Environmental Impact Assessments and Regulations
- Session 3: Controlled release experiments project updates
- Session 4: Monitoring
 - Part I: Overview
 - Part II: Baseline Monitoring and Sensitivity
 - Part III: Quantification and diffuse leakage
- Session 5: Overburden/ Mechanisms of migration from deep to shallow subsurface
- Session 6 : Leakage Scenarios
- Session 7: Communication of leakage
- Session 8: Conclusions and decision on aims and objectives

Main Conclusions/Outcomes

- EIA regulations are not seen as a barrier to projects
- Increase in controlled release projects, which show a variation in focus over a wide range of settings (based on knowledge gaps)
- Indicator species being identified, especially benthic and terrestrial plants
- Monitoring potential for large area of coverage for lower cost, i.e. EM remote sensing (on shore) AUVs (offshore)
- New techniques for potential diffuse leakage and brine migration
- Using a process-based methodology potentially less baseline monitoring needed. Though baselines still needed for leak detection and impacts
- Seasonality and timing can effect potential leakage impact
- Gaps identified in the past are being addressed

Recent and Current Studies

- Global Storage Resources Gap Analysis for Policy Makers, Geogreen – Published 2011
- Feasibility of Monitoring Substances Mobilised by CO₂, CO2CRC Published 2011
- Quantification of CO₂ Leakage, CO₂GeoNet Published 2012
- Extraction of Formation Water from CO₂ Storage, EERC Final Report Received
- Induced Seismicity and its Implications for CO₂ Storage Risk, CO2CRC – Draft Received/ Expert Review Stage
- Subsurface Resource Interaction, CO2CRC Draft Received
- Potential Implications of Gas Production from Shales and Coal for CO₂ Geological Storage, ARI – In Progress
- Mitigation of Unwanted CO₂ in the Subsurface, CO₂GeoNet in progress
- The Process of Developing a CO₂ Test Injection Experience to Date and Best Practice – In Progress

Quantification Techniques for CO₂ Leakage (CO₂GeoNet)

- Primary focus of monitoring techniques has been to monitor plume behaviour and detect leakage to the biosphere;
- EU ETS and for national GHG inventory purposes, need to quantify leaked emissions should leakage occur.
- Identify & review potential methods for quantifying CO₂ leakages from a geological storage site, from the ground or seabed surface.

Monitoring Methods

- Marine Monitoring
 - E.g. Sonar methods
- Atmospheric Monitoring
 - E.g. Eddy Covariance
- Shallow subsurface
 - E.g. gas flux or soil gas samples
- Ecosystem & Remote Sensing Monitoring

Monitorina	nitoring the shallow subsurface						Applicability	
womoning	LIC SHAILOW SUDS	unace	1				Good	
Task	Method	Pre- injection	Operation	Post- injection	Comments		Moderate Poor (at present)	
Leakage	Hydrochemical				Parameters such as pH may indic	icate leakage; particularly		
detection	monitoring				useful where monitoring wells already exist			
	Visible surface effects				e.g. bubbling streams; rust deposits			
	Gravimetry				Detects changes in density; baseline /natural variations required; verification of cause by sampling			
	Electrical/EM				Conductivity/resisitvity; baseline /natural variations required; verification of cause by sampling			
	Airborne EM				Conductivity/resisitvity; baseline /natural variations required; verification of cause by sampling			
	4D seismic survey				Can be done at same time as reservoir/overburden with shorter offset; may lack sensitivity			
	4D multicomp. seismic				Can be done at same time as reservoir/overburden with shorter offset; may lack sensitivity			
Leakage quantification	Hydrochemical + flux				Carbon content analysis with flux stream flow or groundwater volum	e)		
	4D seismic survey				With Gassmann modelling/post-st analysis methods; high uncertaint	у		
	4D multicomp. seismic				With above methods, also pre-stack inversion which may be more accurate			
	Gravimetry				Analysis of density changes; research on natural analogues required; natural variation			
	Electrical/EM				Analysis of conductivity/resistivity changes; research on natural analogues required; natural variation			
	Airborne EM				Analysis of conductivity/resistivity changes; research on natural analogues required; natural variation			
Reducing uncertainty	Tracers				Addition of e.g. perfluorocarbons	tracers to	injected CO ₂	
	Isotopic analysis				Elicidates source of gas			
	Gravimetry				Can help constrain density when u seismic quantification methods	used in co	onjunction with	
	Electrical/EM &				Can help constrain saturation whe	en used ir	n conjunction	
	Airborne EM					vith seismic quantification methods		

Quantification Conclusions

- Portfolio of methods that may provide better leakage quantification with reduced uncertainty
 - In monitoring the shallow subsurface, hydrochemical monitoring combined with flux measurements and the use of tracers/isotopic analysis
 - In monitoring the marine environment, plume profiles obtained with sonar methods combined with chemical analysis and the use of current meters
 - In monitoring the surface/atmospheric environment, soil gas analysis combined with flux measurements, the use of tracers/isotopic analysis and meteorological monitoring

Extraction of Formation Water from CO₂ Storage (EERC)

- Study considers injection/ extraction scenarios
 - Capacity
 - Plume/ Pressure Management
- Surface Dissolution
- Water Use
- Case Studies Ketzin, Gorgon, Teapot Dome, Zama

Capacity and Pressure and Plume Management

- Capacity increased for all case studies
 - Most effective in closed system Zama
 - For Ketzin and Teapot dome, most increased capacity by extra injection well
 - Least effective at Gorgon reservoir capacity vastly exceed injection/ extraction capacity
- Pressure and Plume management
 - achieved at Ketzin, Gorgon and Teapot Dome
 - Zama pressure maintained below acceptable limits, until reservoir nearly filled
 - Reasonable method of pressure and plume management

Plume Management at Gorgon

Case 1: 8 injectors 97.3 Mt in 25 years Case 2: 8 injectors 4 extractors 97.5 Mt

In 25 years

Brine Extraction Conclusions

- Site specific variable effects depending on geological and operational factors
- Capacity increase most effective for closed systems
- Optimising for pressure maintenance generally decrease storage capacity and increase extracted water volume
- Extracted water unlikely to be beneficial offshore/ coastal as seawater desalination more cost effective
- High TDS unlikely to be cost effective to treat water
- Feasible if moderate water quality, available inexpensive energy and local demand
- Surface dissolution unlikely to be a viable option in most situations as the capacity of produced fluids to dissolve and carry CO₂ is too low

Induced Seismicity (CO2CRC)

- Aim of study: review of the mechanisms that cause induced seismicity and their application to geological storage of CO₂.
- Not much data related to CO₂ Storage sites, also used data from analogues from geothermal, hydrocarbon production, waste disposal
- From this data a range of relationships can be noted for when there is induced seismicity, for example:
 - Positive correlation between max induced earthquake and o Total volume of fluid injected/ extracted
 - Average injection/ extraction rate
 - Increase in permeability with decreasing b-value
 - Spatial clustering around inj/ext wells

Injection and Extraction Sites considered

 Relationship of max earthquake to total fluid

 Relationship of max earthquake to average injection/ extraction

Induced Seismicity Conclusions

- To date few earthquakes at CO₂ injection sites but low volume and some sites lack seismographs
- From collective analysis, induced earthquakes generally small magnitude, occasional large (M≥4) in some cases
- Relationships seen from accumulated data
- Models used to predict reviewed statistical and physical
 - Used to ID cases where risk of induced seismicity can be minimised by changing injection strategy
- Risks can be reduced and mitigated using a systematic and structured risk management programme

Knowledge gaps/ further research identified are:

- Produce across industry seismicity catalogue database,
- Improve understanding of fundamental relationships,
- Improve physical modelling e.g. poroelastic effects,
- Study scaling effects from pilot projects to production,
- Develop standard risk management procedures and guidelines,
- Fill in some knowledge gaps by collaborating with other industries

Thank you See you at GHGT-11 www.ghgt.info

For reference: John.gale@ieaghg.org www.ieaghg.info

