Multi-Objective Optimization Approaches for the Design of Carbon Geological Sequestration Systems

Project DE-FE0001830

Dr. Domenico Baù

Dept. of Civil and Environmental

Engineering

Colorado State University

U.S. Department of Energy

National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the
Infrastructure for CO₂ Storage
August 21-23, 2012

Presentation Outline

- Benefit to the Program
- Project Overview: Goals and Objectives
- Technical Status
- Accomplishments to Date
- Summary
- Appendices

Benefit to the Program

Benefits Statement

- A decision support framework is being developed to analyze – for any given site – the Tradeoffs Between:
 (a) Minimizing Risk of Carbon Leakage; (b) Minimizing Injections Cost; (c) Maximizing Mass of Carbon Stored.
- The framework relies upon the combination of a multiphase model and multi-objective optimization algorithms.
 Ideal for site selection, scoping and evaluation.
- This technology will contribute to the Carbon Storage Program (CSP) effort of ensuring that 99 percent of injected CO₂ remains in the injection zones.

Project Overview: Goals and Objectives

- Statement of Project Objectives.
 - Educational: Provide training opportunities to two graduate students to improve human capital and skills necessary to implement CCS technologies.
 - Research: Development of an integrated simulationoptimization framework to support the planning and management of Carbon Geological Sequestration Systems.

Project Overview:

Goals and Objectives

- CGS must be examined with respect to the risk of carbon leakage from storage formations, which increases as CO₂ migrates into regions of brine aquifers where caprock continuity is uncertain or unknown
- Leakage risk increases with mass of carbon injected; CGS feasibility requires identifying tradeoff injection alternatives;
- The simulation-optimization framework aims at <u>identifying</u> these <u>alternatives</u>;
- The percentage of CO₂ mass leaked directly affects the Risk objective (CSP Goal 3);

- CGS optimization framework components
 - Multiphase Flow Simulator
 - Multi-Objective Optimization Formulation
 - Multi-Objective Optimization Solver
- Tradeoff Analyses for Synthetic Test Cases to assess framework capabilities.

Multiphase Flow Simulator

- Numerical Models are Computationally Intensive, and not adequately suited for CGS simulation-optimization over largescale sedimentary basins;
- The framework must rely on a computationally fast flow simulator, however capable to capture major CGS features while reducing problem complexities;
- A semi-analytical model CO2FLOW has been implemented based upon work by Nordbotten et al. (2009) and Celia et al. (2011).
- CO2FLOW estimates fluid pressure change, plume distribution and possible CO₂ leakage occurring as carbon migrates in brine aquifers and encounters caprock discontinuities.

- Multiphase Flow Simulator
 - CO2FLOW assumes the geological system as a sequence of aquifer-caprock layers; caprock layers are homogeneous; aquitards are impermeable, except at leaky pathways.

CO₂ injection system Abandoned well CO2 plume CO, plume CO, plume CO, plume CO₂ plume Leaky CO, plume **Pathways** CO2 plume Brine aquifer

- Multiphase Flow Simulator
 - CO2FLOW uses Norbotten's pressure model:

$$\Delta p = \Delta p(g, H, \rho_w, \rho_c, \mu_w, \mu_c, k, S_{res}, Q_w, r, t)$$

- Pressure superposition is used to estimate the effect of the presence of leaky wells from which brine and CO₂ can escape;
- Requires linear system solution at each time step;
- CO₂ mass flow across leaky wells is estimated using Darcy's law

- Multiphase Flow Simulator
 - Three modifications:
 - » At each time step, a "Picard" iteration is performed to solve the non-linear systems of equations
 - » Pressure is calculated based upon superposition of leakage from both phases;
 - » The solution is extended to generic leaky areas

- Multiphase Flow Simulator
 - Stochastic Analysis: quantify effects on mass leakage and fluid overpressure of uncertainty in system parameters such as:
 - » Aquifer Permeability, Porosity, Leakage Pathway Permeability, System Compressibility

Value
1E-13
0.15
1E-13
0.20
24
1000
600
4.5E-4
4.6E-5
0.3
4.6E-10

Scenario	Q _{inj} (kg/s)	Time (years)
S1	100	20
S2	50	40
S3	33.33	60

- Multiphase Flow Simulator
 - Stochastic Analysis: quantify effects on mass leakage and fluid overpressure of uncertainty in system parameters such as:
 - » Aquifer Permeability, Porosity, Leakage Pathway Permeability, System Compressibility

Cumulative Distribution Functions: $k (m^2) --- \log(k) \in N(-13,0.5)$

- Multiphase Flow Simulator
 - Sensitivity Analysis: Fourier Amplitude Sensitivity Test (FAST, Saltelli et al., 2000)

Influence on near-well overpressure

Influence on mass % CO₂ leakage

Multi-Objective Optimization Formulation

Identify Injection Schemes that:

- Objective 1: Maximize {CO₂ mass storage}
- Objective 2: Minimize { Total Cost}
 - » Total Cost = Installation Cost (N.wells)
 - + Operation/Maintenance (CO₂ mass stored)
 - + Leakage Recourse (CO₂ mass leaked)

Subject to **Constraints** on:

- CO₂ mass storage (minimum and maximum)
- Maximum CO₂ injection rates
- Maximum Fluid overpressure in proximity of Injection Units

- Multi-Objective Optimization Formulation
 - Formulation is deterministic only for algorithm testing purposes
 - CO₂ mass leakage enters the CGS cost as a "penalty" to sustain, which is assumed to increase non linearly as leaked CO₂ mass increases.
 - This approach is suited to including cap-and-trade benefits, which can reduce cost.
 - In the solution to the two-objective constrained optimization problem, the flow simulator is required to estimate leaked CO₂ mass and fluid overpressure for each injection alternative being tested.

- Multi-Objective Optimization Algorithm
 - Non-dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb, 2002)
 - » Based upon evolutionary optimization operators: natural selection, reproduction (crossover, mutation), and elitism
 - » Suited for mixed-integer problems with non-linear discontinuous objective functions and constraints
 - » Provides optimal or close-to-optimal Pareto sets
 - » Requires preliminary simulations for tuning optimization parameters
 - » Global optimization requires an elevated number of "calls" to the simulation model, which increases with the number of decision variables
 - Computationally fast simulators are required (CO2FLOW)

- CGS Multi-Objective Optimization
 - CO2FLOW + NSGA-II
 - Tradeoff "Pareto" Sets
 - Graphic Unit Interface (GUI) (being developed)

- CGS Multi-Objective Optimization
 - Example Tradeoff Pareto Sets

Test Site Optimization of Varied Aquifer Permeabilites

Test Site Optimization of Varied Leaky Well Permeabilites

- CGS Multi-Objective Optimization
 - Example Tradeoff Pareto Sets

Test Site Optimization of Varied # of Leaky Wells

Test Site Optimization of Varied Aguifer Thicknesses

Application to MTU Test site:

- Application to MTU Test site:
 - Developed Ad Hoc Categorical Indicator Kriging Simulation Algorithm (CIKSIM)
 - Generate Equally likely Realizations of Leakage Pathways based upon a prescribed spatial stationary covariance model

Example 1

- Bi-modal PDF: P_{LK}=0.03; P_{LK}=0.97
- Exp.covariance model: λ_{LK} =100 λ_{CR} =1000.

Example 2

- Bi-modal PDF: P_{LK} =0.03; P_{LK} =0.97
- Exp.covariance model: λ_{LK} =200 λ_{CR} =1000.

Accomplishments to Date

- Training of Two PhD Students Completed
- Implemented Multi-phase Semi-Analytical Flow Model
- Performed Stochastic-Sensitivity Analysis to Identify Key Parameters Affective Safety of Geological Carbon Sequestration
- Developed Multi-Objective Optimization Based Planning Framework based upon CO2FLOW and NSGA-II
- Collected and Assimilated MTU test site data
- Developed Categorical Indicator Kriging Simulation
 Algorithm to Model Geostatistically Cap Rock Continuity
 at MTU Test site

Summary

Lessons Learned

- Scoping calculations and optimal planning of large scale CGS is possible only by using computationally efficient brine-CO2 flow models.
- Key Parameters affecting storage safety features are the formation permeability, its compressibility, the location and the conductivity of CO2 escape pathways

Summary

- Future Plans

- Complete development of multi-objective framework including uncertainty in model parameters and leakage pathways characteristics
- Development of GUI for preliminary CGS design calculation and identification of "Pareto-optimal" injection alternatives
- Application to MTU test site
- Submit results to peer-review journals
- Students successfully graduate.

Appendix

Organization Chart

- Project participants:
 - Dr. Domenico¹ Baù (PI)
 - Brent M. Cody¹, M.Sc. (Ph.D. student)
 - Ana Gonzalez-Nicolas¹, M.Sc. (Ph.D. student)

¹ Colorado State University, Dept. of Civil and Environmental Engineering

Program Officer: Robert Vagnetti, DOE-NETL

Gantt Chart

	Description	Project Duration: Start: 12/01/2009; End: 11/30/2012.													
Task		Year 1			Year 2			Year 3 Yea				Year 4	No-Cost Extention		
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	End
		12/09	1/1 0	4/1 0	7/10	10/1 0	1/1 1	4/1 1	7/11	10/1 0	1/1 1	4/1 1	7/11	10/1 2	5/12
1	Project Management Plan														
2.1	Student Selection														
2.2	Students training on MFLOW3D														
3.1	Collection of MTU Test-Site Data														
3.2	Assimilation of MTU Test-Site Data														
CSU	CCS Multi- objective framework														TI
4.2	Application to the MTU test site														

Bibliography

- Brent Cody, Ana Gonzalez-Nicolas, Domenico Baù (2013),
 Stochastic Multi-Objective Optimization for the Design of Carbon Geological Sequestration Systems, In preparation.
- Ana González-Nicolás, Brent Cody, Domenico Baù (2013),
 Stochastic Sensitivity analysis of factors affecting the leakage of CO2 from injected geological basins, In preparation.
- Ana González-Nicolás, Brent Cody, Domenico Baù (2013),
 Modeling Carbon Geological Sequestration in a Depleted Reef-Reservoir, In preparation.

