Development and Deployment of MVA Tools

Samuel M. Clegg Los Alamos National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 21-23, 2012

Presentation Outline

- Benefit to the Program
- Project Overview
- Technical Status
 - Frequency Modulated Spectroscopy (FMS)
 - $-\Delta O_2/\Delta CO_2$ Ratio
 - Quantitative Seismic Monitoring
- Accomplishments
- Summary
- Appendix

Benefit to the Program

- Carbon Storage Program Major Goals
 - Develop technologies that will support industries' ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.
 - 2. Develop technologies to demonstrate that 99 percent of injected CO_2 remains in the injection zones.
 - 3. Conduct field tests through 2030 to support the development of BPMs for site selection, characterization, site operations, and closure practices.
- Project Benefits Statement.
 - The Project Goals were designed to directly meet the program major goals through Monitoring, Verification, and Accounting (MVA) technology development including; 1. Advanced Seismic Subsurface Imaging; 2. Surface seepage detection by Frequency Modulated Spectroscopy and O2/CO2 Ratios; and 3. four field experiments per year.

Project Overview: Goals and Objectives

- Surface MVA Monitoring
 - Distinguish Natural and Anthropogenic CO2 Sources
 - Stable Isotope Detection by Frequency Modulated Spectroscopy
 - $\Delta O2/\Delta CO2$ Ratio
 - Field Demonstration of the Instruments
- Subsurface Monitoring
 - Quantitative Seismic Monitoring
 - Identification of Fractures and Seepage Pathways
 - Design Seismic Field Experiments
 - Techniques will be employed by the Big Sky Partnership

Frequency Modulated Spectroscopy (FMS)

- Detect CO₂ Seepage
 - At Natural CO₂ Emissions
- Generally, the Atmosphere Contains
 - 98.9% ¹²C¹⁶O₂
 - 1.1% ¹³C¹⁶O₂

Absorption Spectroscopy

- Maximum Line Strength (HITRAN)
- ${}^{12}C^{16}O_2 = 1.83x10-23$
- ${}^{13}C^{16}O_2 = 2.10x10-25$

Frequency Modulated Spectroscopy

 100x to 1000x more sensitive than absorption spectroscopy

Fundamental Frequency Modulated Spectroscopy

In Situ FMS Instrument Development

In Situ Observations

- Background = -8 to $-11^{\circ}/_{\circ\circ}$
- Seepage < -15°/_{oo}

- Background = -4 to -7°/_{oo}
- Over Source ~ -20°/_{oo}
- Im Away ~ -15 to -46°/₀₀
- >1m Away = -4 to -7°/_{oo}

Remote Instrument Development

FM-LIDAR

- Direct a CW Laser Across Sequestration Site
- 10ns Modulator Pulse
- Record Time Resolved Return Signal
- Convert Time to Distance

Frequency

$\Delta O_2 / \Delta CO_2$ Ratio

accumulation of CO_2 in the boundary layer. Attributing this CO_2 to plant and soil respiration vs. industrial sources is essentially impossible with CO_2 measurements alone.

Deviation of $\Delta O_2: \Delta CO_2$ from the nominal value of 1.1 along with the known value of CO_2 concentration allows calculation of the amount of excess CO_2 not attributable to natural sources...

Quantitative Seismic Monitoring

- Developed and implemented a double-difference waveform inversion method with a total-variation regularization scheme.
- Improved our double-difference waveform inversion method with a modified total-variation regularization scheme.
- Developed and implemented a wave-energy-weighted doubledifference waveform inversion method.
- Studied the capability for quantifying reservoir changes caused by CO2 injection using time-lapse seismic data acquired with an optimally designed sparse array.
- Will investigate the field applicability of double-difference waveform inversion for quantitative seismic monitoring.
- Methods transitioned to the Big Sky Regional Partnership!

Time-Lapse Model with CO2 Leakage Through a Fault Zone

Initial Model

Time-Lapse Model

Inversion Results of Time-Lapse Changes Using Sparse-Array Data

Inversion result of P-wave velocity

Vertical profile of ΔVp along the fault zone (Red: inversion)

Inversion result of S-wave velocity

Vertical profile of Δ Vs along the fault zone (Red: inversion)

Accomplishments

- Surface Diagnostics
 - In Situ FMS Instrument Development
 - Remote FMS Instrument Development
 - LIDAR FMS Instrument Development
 - O2/CO2 Instrument Development
- Field Demonstration of the Instruments
- Advanced Seismic Monitoring

Summary

- Surface Measurements
 - FMS and $\Delta O_2/\Delta CO_2$ Instruments are sensitive indications of natural vs. anthropogenic sources of CO_2
- Subsurface Seismic Imaging
 - Quantitative Imaging of the Seismic Plume and potential fractures.

Summary

- Lessons Learned
 - Field Work is Critical. We learned a great deal every time we deploy the instruments.
- Future Plans
 - Extend FMS to Detect H₂^{34/32}S (1.58 μm) and ^{13/12}CH₄ (1.65 μm) to indicate seepage from EOR site
 - Subsurface Fiber Optical MVA System
 - Field Demonstrations of New Technologies
 - Quantitative EOR Seismic Monitoring

Gratefully acknowledge NETL for funding this work.

The ZERT Program for Providing the Field Location and Accommodating Our Experiments

Appendix

Organization Chart

- Frequency Modulated Spectroscopy (FMS)
 - Sam Clegg FMS Development Lead
 - Julianna Fessenden Stable Isotope Geochemist
 - Rhonda McInroy Technician
- $\Delta O_2 / \Delta CO_2$
 - Thom Rahn $\Delta O_2 / \Delta CO_2$ Instrument Development Lead
- Advanced Seismic Imaging
 - Lianjie Huang Advanced Seismic Imaging Lead
- Field Work Coordination
 - Thom Rahn
 - Julianna Fessenden

Recent Publications & Presentations

- Shang, X. and Huang, L., "Optimal designs of time-lapse seismic surveys for monitoring CO2 leakage through fault zones," 2012, vol.10, 419-433.
- Zhang, Z., Huang, L., and Lin, Y., "A wave-energy-based precondition approach to full-waveform inversion in the time domain," Accepted to present at 2012 SEG Annual Meeting.
- Carbon Dioxide Monitoring, Verification and Accounting (MVA) by Carbon Stable Isotope Measurements, Samuel Clegg et al, CCUS #409
- High Precision O2 Measurements as a Monitoring Tool for CO2 Sequestration Integrity, Thom Rahn et al. CCUS #378
- Zhang, Z., and Huang, L., "Quantitative seismic monitoring for carbon sequestration using sparse-array data," 2012 CCUS Annual Conference.
- 2011
 - Lianjie Huang organized and chaired a Special Session on CO2 Geophysical Monitoring at 2011 AGU Fall Meeting held in San Francisco, California, on December 5-9, 2011. A total of 7 oral presentations and 24 posters were given. Both oral and poster sessions were well attended.
 - Sam Clegg presented an invited paper at the 2011 Fall AGU Meeting on the ZERT field work.
 - Thom Rahn and Anna Trugman presented a paper at the 2011 Fall AGU Meeting on the ZERT field work.
 - Lin, Y., Zhang, Z., and Huang, L., "Spatially-variant Tikhonov regulization for double-difference waveform inversion," 2011 CCS Annual Conference.
 - Zhang, Z., Lin, Y., and Huang, L., "A Gauss-Newton-Krylov method for double-difference waveform tomography," 2011 CCS Annual Conference.
 - Yang, D., Fehler, M., Malcolm, A., and Huang, L., "Quantitative monitoring of CO2 injection using double-difference waveform inversion: Application to time-lapse walkaway VSP data from SACROC," 2011 CCS Annual Conference.
 - Shang, X. and Huang, L., "Optimal designs of time-lapse seismic surveys for monitoring CO2 leakage through fault zones," 2011 CCS Annual Conference.
 - Zhang, Z., Lin, Y., and Huang, L., "Full-waveform inversion in the time domain with an energy-weighted gradient," 2011 SEG Annual Meeting, Expanded Abstracts.
 - Yang, D., Fehler, M., Malcolm, A., and Huang, L., "Carbon sequestration monitoring with acoustic double-difference waveform inversion: A case study on SACROC walkaway VSP data," 2011 SEG Annual Meeting, Expanded Abstracts.
 - Zhang, Z., Huang, L., and Lin, Y., "Quantitative monitoring for geologic carbon sequestration using double-difference elastic-waveform inversion," 2011 AGU Fall Meeting.