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Benefit to the Program  

 This research project quantifies relationships between 

fluid flow, heterogeneity, and reaction rates specific to 

carbon storage in carbonate reservoirs by integrating 

characterization, solution chemistry, and simulated 

data.  

 

 This project meets the Carbon Storage Program goals 

to develop technologies that will support industries’ 

ability to predict CO2 storage capacity in geologic 

formations to within ±30 percent.  
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Project Overview 

Goals and Objectives 

 The goal of this project is to calibrate key parameters in 

reactive transport models that will be used to predict final 

storage of CO2 in carbonate EOR fields. 

 

 This project will advance science-based forecasting for 

the transition of CO2 – EOR operations to storage sites.  

 

 Success is tied to the ability to scale reactive-flow and 

transport parameters from the pore scale to larger scales 

where characterization data are limited. 
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Technical Status 

5 

• The research scope consists of three major tasks: 

 Model calibration against existing experimental data base 

on carbonate rocks from the Midale-Weyburn Carbon 

Storage Project (focus of today’s presentation) 

 Experimental and characterization data at larger scales 

(less detail) 

 Refined model and parameter scaling towards predicting 

changes in reservoir porosity and permeability 
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 The chemical mineral-fluid interactions induced by CO2 injection have a major effect 

on rock porosity and permeability evolution, which may potentially alter the behavior 

or performance of  CO2 geological storage and EOR operations; 
 

 The mineral dissolution/precipitation and associated flow and reactive transport 

processes in porous media are described at different scales; 

           

 

 

 

 
 

 Reactive transport modeling represents a critical component in assessment of 

geochemical impact of CO2 water-rock interactions; 
 

 However, a lack of proper calibration or upscaling of the effective 

macroscopic parameters over large field-scales hinders accurate reactive-

transport modeling of CO2 fate and transport.  

 

 

 

Pore (microscopic) scale ~ µm   Core (laboratory) scale ~ cm    Large (reservoir/field) scale ~ km  

Motivation & Objectives 
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Reservoir Units and Core Sample Collection 

Weyburn Flow Unit Model 

from Whittaker, PTRC 

Three Fingers Evaporite 

Midale Marly Dolostone 

Midale Vuggy Limestone 
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Vuggy Limestone 

Reservoir flow units have different properties 

Marly Dolostone 

- XCMT images provided by Yelena Sholokhova 
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Core-Flood Experimental Conditions 
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• T = 60°C 

• Pconf = 24.8MPa  

 

• FR = 0.05 mL/min*  

• Pout = 12.4 MPa 

• 1.1m NaCl brine, equilibrium with calcite 

• fluid pCO2 = 3; 2; 1; and 0.5 MPa 
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 3-D continuum-scale reactive 

transport models 

 Boundary conditions mimic those 

observed under experiments  

 Dolomite and calcite reaction kinetics 

 

 

 Porosity – Permeability – Surface 

Area 

  

 

  

Core Sample Grid = 250 microns Model Domain 

Reactive Transport Modeling of CO2 Core Flooding  Experiments 
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 Chemical Model - Use laboratory derived 

parameters 

 Rate equations tied to equilibrium 

 Rate constants 

 Activation energies – temperature dependence 

 Equilibrium constants (slight adjustment for 

dolomite)   

 Porosity – Permeability – Surface Area 

 Change surface area in proportion to 

decreasing spherical grains   

 “n” is dependent on sample heterogeneity 

 Porous and homogeneous Marly, n = 3 

 Impermeable and heterogeneous Vuggy, n = 8 

 

  

 

  

Summary of parameter results for 3D continuum model 
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Apply arithmetic averaging to scale characterization data 

to simulation grid 

Simulation Model for Vuggy Limestone (3 Mpa) 

Porosity             Calcite             Dolomite  
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Measured and Modeled Porosity 
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  Estimate grid by grid effective permeability 

 The gray-scale specific 

permeability is assigned based on 

qualitative assessment of micro-

pore connection from segmented 

2D BSE images; 

  

 The numerical grid-block based  

permeability is evaluated  by 

assessing the pore connectivity 

between the modeling grids , and 

then mapping the clusters of 

macro-pores, fractures, and highly 

permeable zones observed onto a 

three-dimensional regularly spaced 

finite difference grid (Botros et al., 

2008); 

 

 The permeability is further 

calibrated by matching model 

results with experimental 

measurement and tomography 

data. 
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Reservoir flow units have different properties 

Marly Dolostone 

kinit 1-2 mD 
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Marly dolostone yields stable dissolution fronts that can 

be described by 3D and 1D reactive transport models 

3-D NUFT Model XCMT

(a)

3-D NUFT Model XCMT

(b)

3-D NUFT Model XCMT

(c)

pCO2 = 1 MPa 
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3D and 1D reactive transport data are in good agreement 

with measured data 

Marly Dolostone pCO2 = 3 MPa 

Measured Porosity and mineral volume 
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3D and 1D reactive transport data are in good agreement 

with measured data 

Solution Chemistry; Marly Dolostone reacted at pCO2 = 3 MPa 

Distance mm 
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Vuggy Limestone 

Reservoir flow units have different properties 

kinit 0.01-0.03 mD 
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pCO2 = 1 MPa 
 

 

 

 

 

 

pCO2 = 0.5 MPa pCO2 = 2 MPa 

pCO2 = 3 MPa 

 

 

 

 

 

 

 

 

 

 

 

 

Model           XCMT Model      XCMT 

Model           XCMT Model           XCMT 

Vuggy limestone yields unstable dissolution fronts 

that can be described by 3D transport models 
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Vuggy limestone yields unstable dissolution fronts 

that can be described by 3D transport models 

pCO2 = 1 MPa 

pCO2 = 0.5 MPa pCO2 = 2 MPa 

pCO2 = 3 MPa 
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3D reactive transport solution chemistry are in 

good agreement with measured data 

Model-experiment Comparison of pH  Model-experiment comparison of solution chemistry  

pCO2 = 3 MPa 
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 Chemical Model - Use laboratory derived 

parameters 

 Rate equations tied to equilibrium 

 Rate constants 

 Activation energies – temperature dependence 

 Equilibrium constants (slight adjustment for 

dolomite)   

 Porosity – Permeability – Surface Area 

 Change surface area in proportion to 

decreasing spherical grains   

 “n” is dependent on sample heterogeneity 

 Porous and homogeneous Marly, n = 3 

 Impermeable and heterogeneous Vuggy, n = 8 

 

  

 

  

Accomplishments: Parameter results for 3D continuum model 
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 Key Findings 

 Anisotropic permeability and mineral dissolution 

play dominant roles on porosity and permeability 

changes that will occur during CCUS operations 

 Calibrated several reactive transport parameters 

that scale from microns to centimeters  

 Geochemical parameters for carbonate minerals 

appear to be independent of scale 

 Porosity – Permeability relationships are dependent 

on sample heterogeneity  
 

 Future plans are to conduct experiments and modeling 

at larger scales 

 

 

 
Pore (microscopic) scale ~ µm   Core (laboratory) scale ~ cm    Large (reservoir/field) scale ~ km  
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Gantt Chart:  Task 5 Carbonates 

    
Fiscal Year 2012 Fiscal Year 2013 Fiscal Year 2013 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

5.1.1 Finish model calibration with Weyburn data                         

5.1.2 Finish premodel simulations for new experiments                         

5.1.3 Refine model using new data                         

5.1.1 Experimental Design                         

5.2.2 Conduct experiments                         

5.2.3 Interpret experimental results                         
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