

# Large-Scale Hydrological Impacts of CO<sub>2</sub> Storage: Basin-Scale Simulations and Pressure Management

**ESD09-056** 

Jens T. Birkholzer
with Quanlin Zhou, Abdullah Cihan, and Dorothee Rebscher
Lawrence Berkeley National Laboratory

U.S. Department of Energy

National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO<sub>2</sub> Storage

August 21-23, 2012

### **Presentation Outline**



- Benefit to the Program
- Project Overview
- Technical Status
  - Task 1:

Develop basin- and local-scale high-performance simulation models for evaluation of storage capacity, brine displacement, and groundwater impact in the Northern Plains – Prairie Basal Aquifer

> Task 2:

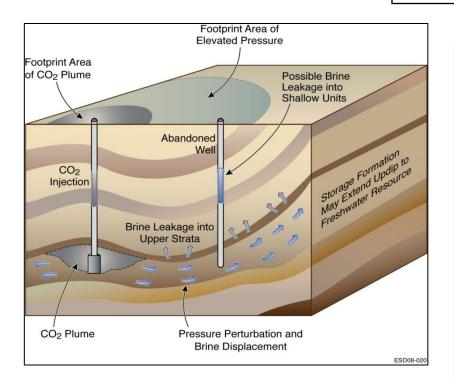
Develop and test "Impact-Driven Pressure Management" (IDPM) via optimized brine extraction to enhance storage capacity and mitigate other issues related to large-scale pressure increases

- Accomplishments to Date
- Project Summary
- Appendix (Gantt Chart, Bibliography)

## **Benefit to the Program**



- ❖ Both tasks provide methodology that supports industries' ability to predict (or control) CO₂ storage capacity in geologic formations to within ±30 percent
- ❖ Task 1 applies new simulation capabilities to evaluate dynamic storage capacity for one of the largest CO₂ storage reservoirs in North America
- Task 2 develops optimization methods, and associated simulation tools, to design pressure management options at minimum cost for brine extraction and disposition


## **Issues Related to Pressure Buildup**



Pressure Buildup and Brine Displacement

**Caprock Damage** 

**Induced Seismicity** 



Interference Between Storage Sites

**Brine Leakage** 

**Effect on Other Georesources** 

**Permitting and AoR** 

Reduced Storage Capacity

Task 1: Predictive Tools and Impact Assessment

**Task 2: Mitigation via Pressure Management** 

## Task 1. Northern Plains – Prairie Basal Aquifer Project: Modeling and Comparison



- The Northern Plains Prairie Basal Aquifer system, extending over nearly 575,000 square miles of the north-central United States and south-central Canada, is considered a very important target for CO<sub>2</sub> storage in North America.
- A bi-national Canada-USA multi-organizational consortium, led by Alberta Innovates Technology Futures (AITF) in Edmonton for the Canadian side and the Energy and Environmental Research Center (EERC) in North Dakota for the US side, started a three-year project in FY11 to characterize the saline formation, evaluate its storage potential, and assess environmental impacts
- ❖ LBNL is part of this consortium responsible for development/application of a high-performance basin-scale simulation model to determine the dynamic storage capacity and possible environmental impact of CO₂ storage on resident brine and shallow groundwater resources in areas of aquifer outcrop in Manitoba, South Dakota and Montana.
- ❖ LBNL's modeling work started in late 2011, after CO₂ source evaluation and hydrogeological aquifer characterization performed by the other consortium partners were made available.

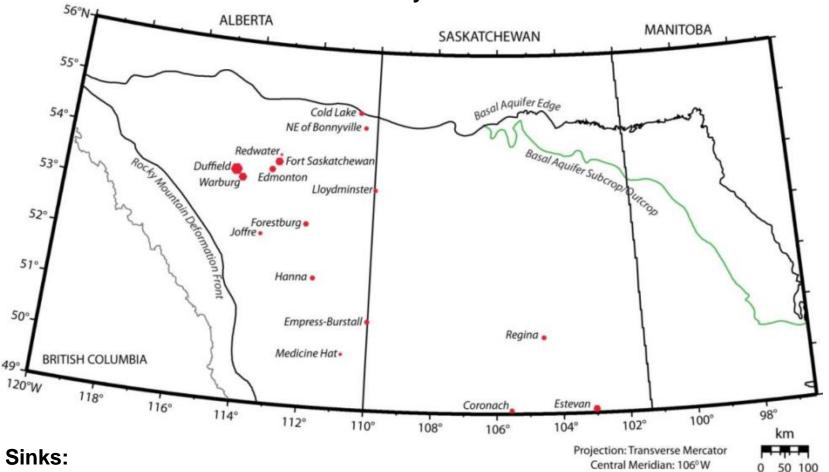


### Work Plan for Task 1



#### ✓ Basin- and Local-Scale Model Development:

- ✓ Determine the appropriate model domain, including the target and overlying formations, based on scoping simulations
- ✓ Develop a basin-scale model grid with adequate far-field boundaries and local refinement around projected plumes on the basis of the geologic model provided by EERC and AITF
- ✓ Parameterize the model based on existing well data and other geologic and hydrologic information, and constrain the large-scale model parameters
- ✓ Develop a set of potential future injection and storage scenarios:
  - ✓ Low, medium, and high injection rates,
  - ✓ Different injection rates in subregions of the Basal Aquifer,
  - ✓ Staged implementation of CO₂ storage in the region with early and late projects


#### Model Application

- For each storage scenario, conduct simulations with the high-performance TOUGH2/ECO2N simulator to:
  - Determine the distribution, migration, and long-term fate of multiple CO<sub>2</sub> plumes corresponding to large CO<sub>2</sub> sources in the region
  - Evaluate the pressure perturbation and brine migration effect at the basin scale, including the interference between individual storage projects
  - Assess the dynamic storage capacity of the aquifer based on the predicted pressure build-up and brine migration results
- Compare predictions from our regional-scale model with simplified semi-analytical solutions developed by other consortium partners, e.g., the Princeton University Group
- Perform sensitivity simulations to assess model uncertainty

## **Basal Aquifer – Canadian Part:** CO<sub>2</sub> Sources



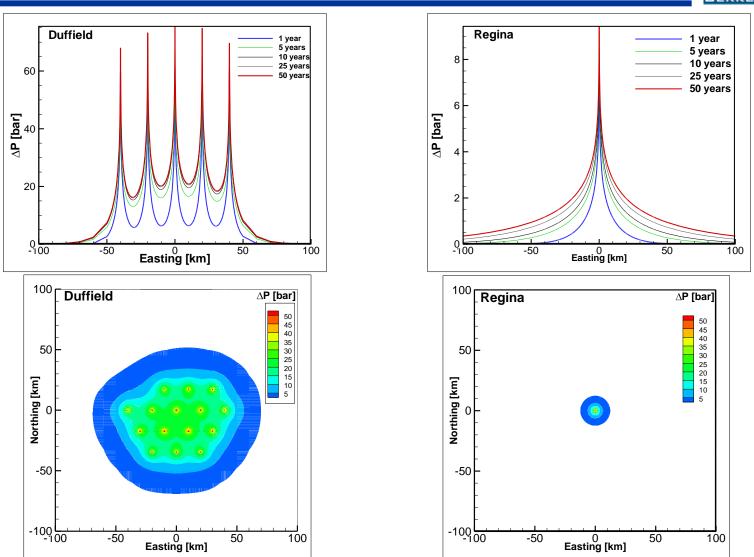
CO<sub>2</sub> Emissions (> 1 Mt/year) in Canada with a total of 75 Mt/year at 16 locations



#### CO<sub>2</sub> Sinks:

- > 11 areal clusters with storage of 75.1 Mt/year in Canada
- > 5 areal clusters for storage of 29.3 Mt/year in United States

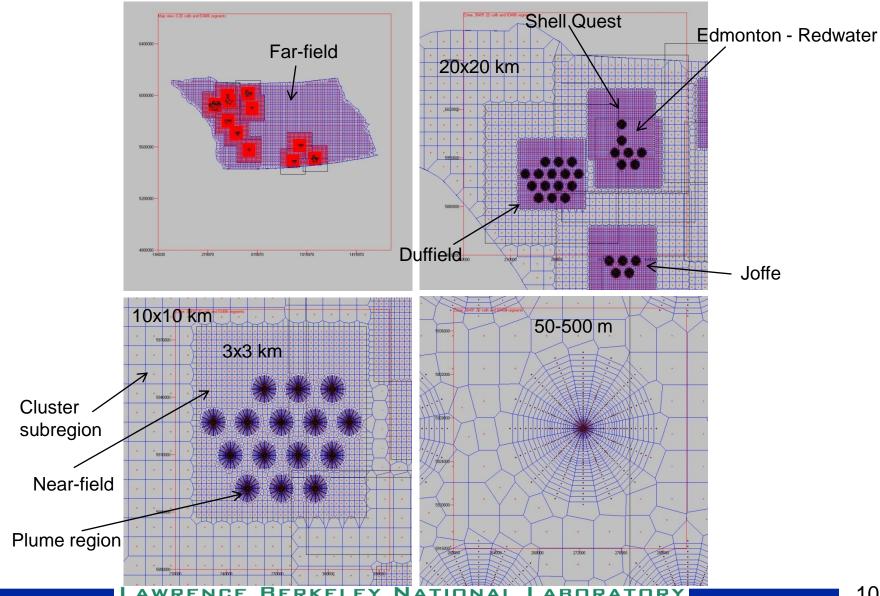
## CO<sub>2</sub> Storage Volumes Per Cluster




| Location                      | CO <sub>2</sub><br>Mt/y | no. of<br>injection<br>wells | porosity<br>[%] | permeability<br>[mD] | specific<br>storativity [1/<br>m] | thickness<br>[m] | depth [m] |
|-------------------------------|-------------------------|------------------------------|-----------------|----------------------|-----------------------------------|------------------|-----------|
| Cold Lake -<br>Bonnyville, AB | 8.3                     | 6                            | 18              | 1000                 | 1.44 10-6                         | 80               | 1259      |
| Shell Quest<br>Radway, AB     | 1.2                     | 1                            | 14.5            | 500                  | 1.18575 10-6                      | 42               | 2013      |
| Edmonton -<br>Redwater, AB    | 9.7                     | 6                            | 12.8            | 500                  | 9.796 10-7                        | 77               | 2055      |
| Duffield, AB                  | 23                      | 15                           | 7               | 100                  | 6.1919 10-7                       | 36               | 2964      |
| Lloydminster,<br>SK           | 2.1                     | 1                            | 22              | 500                  | 1.76282 10-6                      | 109              | 1578      |
| Joffre -<br>Forestburg AB     | 7.1                     | 5                            | 7.5             | 35                   | 6.65442 10-6                      | 67               | 2673      |
| Hanna, AB                     | 4.4                     | 3                            | 10              | 50                   | 8.4366 10-7                       | 48               | 2427      |
| Regina, SK                    | 1.7                     | 1                            | 14              | 1000                 | 1.14816 10-6                      | 48               | 2235      |
| Medicine Hat -<br>Empress, AB | 5.2                     | 3                            | 8               | 750                  | 8.19331 10-7                      | 142              | 2010      |
| Estevan, SK                   | 8.6                     | 6                            | 6               | 50                   | 5.32565 10-7                      | 59               | 2719      |
| Coronach, SK                  | 3.8                     | 3                            | 5.5             | 50                   | 4.58578 10-7                      | 75               | 2667      |
| total                         | 75.1                    | 50                           | -               | -                    | -                                 | -                | -         |

## **Pressure Screening**








The single-phase solution considers both the storage formation and the overlying aquifer, as well as aquitards for pressure attenuation. Superposition is used for multi-well injection.

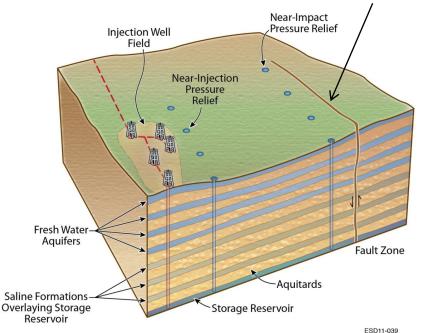
## **Numerical Grid for High-Performance Multi-Phase Simulations**





## Task 2. Impact-Driven Pressure Management (IDPM) Via Optimized Brine Extraction




#### IDPM Goal

- Conduct pressure management with minimal brine extraction volumes while meeting desired pressure reduction goals (as well as other reservoir performance goals)
- Minimize need for infrastructure, pumping, transportation, and surface disposal

### IDPM Approach

- Define specific (local) performance criteria (e.g., maximum pressure increase near fault zone)
- Automatically optimize extraction rates and well locations to meet performance criteria
- Evaluate suitability of passive pressure relief wells
- Investigate feasibility of brine transfer into overlying/underlying formation

Example: Critically stressed fault



ESD11-039

## **Automatic Optimization Using Inverse Modeling Code iTOUGH2**



- Use iTOUGH2 inverse modeling and optimization code with PEST interface for model-independent optimization
- Develop modular optimization framework that has alternative forward prediction tools ranging from simple analytical solutions to full multi-physics models (most example studies shown here use an analytical solution for single-phase pressure)



#### **Forward Predictors**

- Analytical Solution
  - Single-phase flow in homogeneous infinite multi-layer systems
  - No CO<sub>2</sub> migration
- Simulator VESA
  - Two-phase flow in quasi 3D systems (2D aquifers)
  - Vertical integration with CO<sub>2</sub> saturation reconstruction
- Simulator TOUGH2
  - Multi-phase flow in full 3D systems
  - 3D CO<sub>2</sub> migration

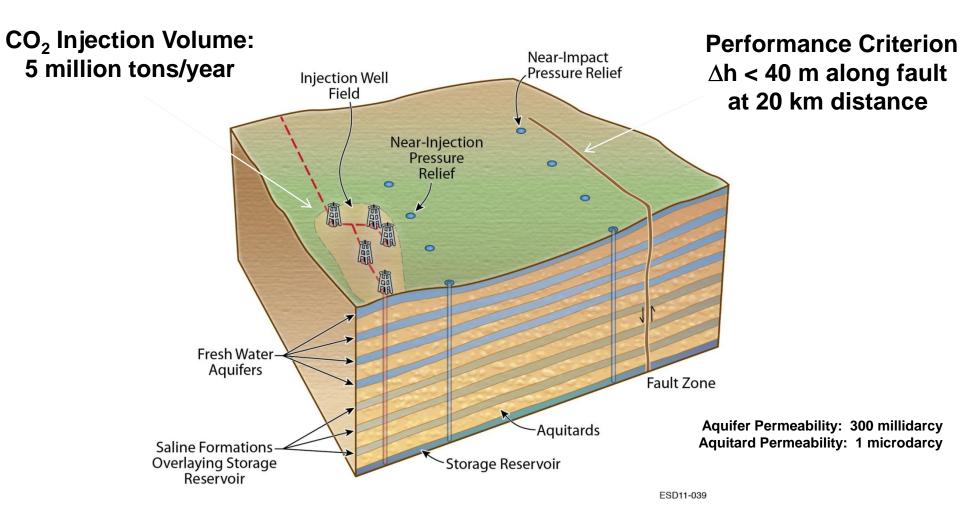
### **Work Plan for Task 2**



### ✓ IDPM Methodology Development

- ✓ Develop inverse modeling and optimization methodology using iTOUGH2 coupled to analytical solution for simplified proof-of-concept studies
- Incorporate higher-fidelity simulators such as VESA and TOUGH2 into optimization framework for complex applications
- Improve optimization efficiency for well placement scenarios coupling global and gradient-based methods

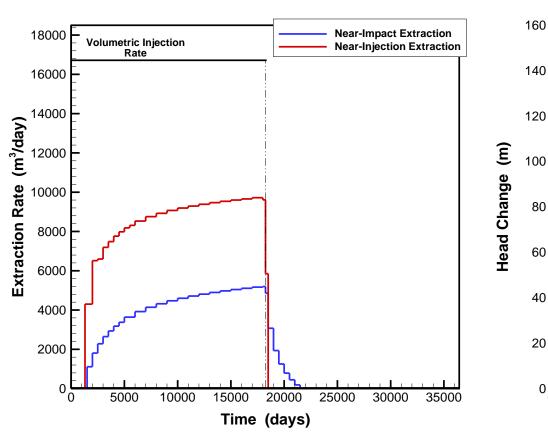
### ✓ Proof-of-Concept Studies

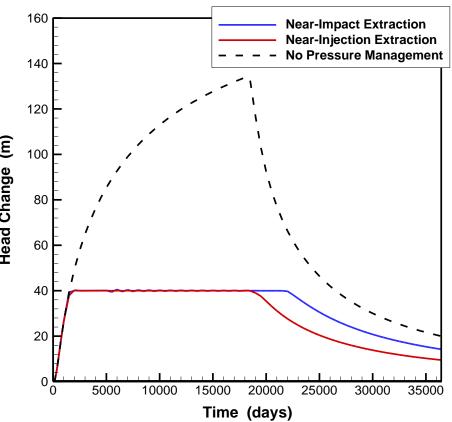

- ✓ Single and multiple performance criteria
- ✓ Active pumping with optimization as well as passive relief
- ✓ Given well locations as well as optimized well placement
- ✓ Transfer of extracted brine surface versus transfer into other formations
- **✓** Post-optimization simulations to assess CO₂ breakthrough

### ❖ Application to More Complex and Realistic Scenarios

- Direct optimization with VESA and TOUGH2 to handle more complexity (e.g., complex geology, heterogeneity, boundary conditions, CO<sub>2</sub> breakthrough)
- > IDPM optimization of one real CO<sub>2</sub> sequestration site

## **Example Applications for Proof-of-Concept Studies**



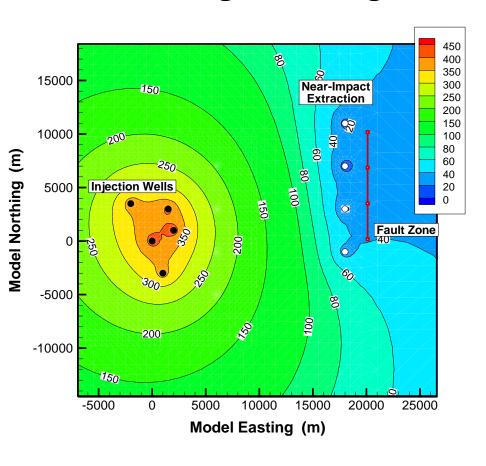

## Active Extraction for Fixed Well Location (Optimized Pumping)

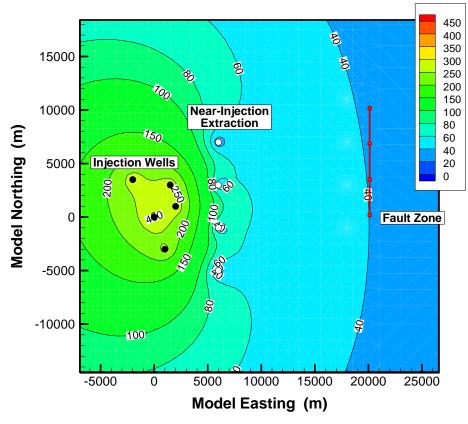


Comparison between near-impact and near-injection arrays. Pumping rates are optimized in a step-wise manner with iTOUGH2 inversion using Levenberg-Marquardt algorithm.






**Pumping Rate** 


Head Change in Fault

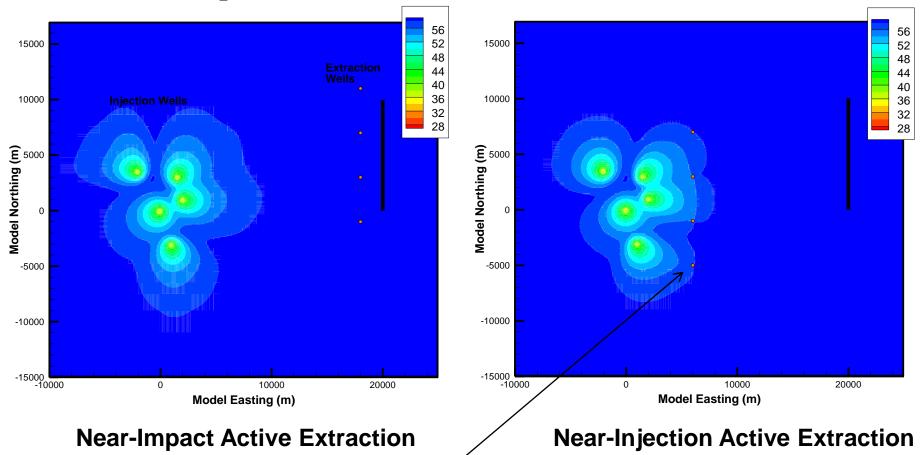
## Active Extraction for Fixed Well Location (Optimized Pumping)



### Head Change in storage reservoir after 50 years of injection






**Near-Impact Active Extraction** 

**Near-Injection Active Extraction** 

## Testing of CO<sub>2</sub> Breakthrough Using Sharp-Interface Model

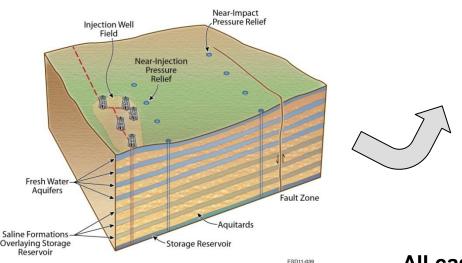


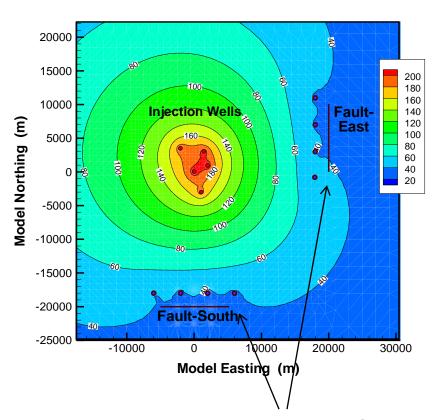
### Distance to CO<sub>2</sub>/Brine Interface from Bottom of a 60m-Aquifer at 50 Years



Additional studies show that partially-penetrating wells screened below the phase CO<sub>2</sub> can prevent breakthrough during brine extraction

## **Comparison of Pumping Rates**





| Pressure<br>Management<br>Scenario      | Performance<br>Objective | Total Brine Volume Pumped to the Surface | Percentage of<br>Injected Fluid<br>Volume (Extraction<br>Ratio) |
|-----------------------------------------|--------------------------|------------------------------------------|-----------------------------------------------------------------|
| Active with Near-<br>Injection Wells    | One Fault                | 148.0 million                            | 48.5 %                                                          |
| Active with Near-<br>Impact Wells       | One Fault                | 70.9 million                             | 23.2 %                                                          |
| Active with Passive Extraction          | One Fault                | 36.3 million                             | 11.9 %                                                          |
| Active with Near-<br>Injection Wells    | Two Faults               | 140.8 million                            | 46.1 %                                                          |
| Active with Well Placement Optimization | Two Faults               | 109.8 million                            | 36.0 %                                                          |

## Optimization Problems with Multiple Performance Criteria

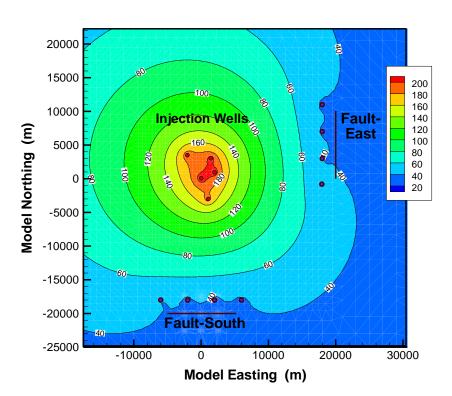


- 1) Optimization of pumping rate for a case with two critically stressed faults
- 2) Optimization of pumping rate AND well placement for a case with two critically stressed faults

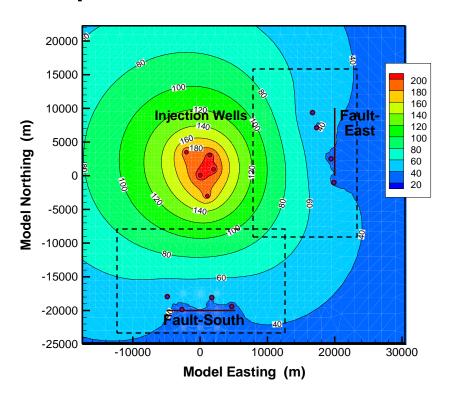




Performance Criterion:  $\Delta h < 40 \text{ m}$  along fault


All cases assume active pumping to the surface.

## Optimization of Well Placement and Pumping Rate




Well placement optimization is based on minimizing total extracted brine volume. The search starts with a given number of wells and initial placement, and then searches for better solutions within a defined area.

#### **Fixed Well Location**



### **Optimized Well Placement**



### **Head Change at 50 Years**

## **Comparison of Pumping Rates**



| Pressure<br>Management<br>Scenario      | Performance<br>Objective | Total Brine Volume Pumped to the Surface | Percentage of<br>Injected Fluid<br>Volume (Extraction<br>Ratio) |  |  |
|-----------------------------------------|--------------------------|------------------------------------------|-----------------------------------------------------------------|--|--|
| Active with Near-<br>Injection Wells    | One Fault                | 148.0 million                            | 48.5 %                                                          |  |  |
| Active with Near-<br>Impact Wells       | One Fault                | 70.9 million                             | 23.2 %                                                          |  |  |
| Active with<br>Passive Extraction       | One Fault                | 36.3 million                             | 11.9 %                                                          |  |  |
| Active with Near-<br>Injection Wells    | Two Faults               | 140.8 million                            | 46.1 %                                                          |  |  |
| Active with Well Placement Optimization | Two Faults               | 109.8 million                            | 36.0 %                                                          |  |  |

## **Accomplishments to Date**



- \* Task 1: Basin- and Local-Scale Simulation Models
  - Developed hydrogeologic model of the Northern Plains Prairie Basal Aquifer in close collaboration with project partners
  - Developed storage scenarios with 16 clusters of injection wells by CO<sub>2</sub> source-sink mapping and screening modeling
  - ➤ Developed a 3D numerical model for a very large region, using unstructured gridding with local refinement for CO₂ plumes
- Task 2: Pressure Management Via Brine Extraction
  - Developed and applied "Impact-Driven Pressure Management" (IDPM) as an optimization method that minimizes brine extraction volumes while meeting defined reservoir management targets
  - Developed automated optimization framework for IDPM based on iTOUGH2-PEST alternatively coupled to a multi-layer analytical solution

## **Project Summary**



### **❖** Task 1: Key Findings and Future Plans

- Work conducted so far suggests that high-performance simulators can successfully handle a very large-scale model domain with unstructured gridding and local refinement
- The high-fidelity model will be applied to assess dynamic storage capacity and environmental impact of several storage scenarios in the Northern Plains – Prairie Basal Aquifer
- Comparison with simpler models will provide guidance on model selection for future projects

### Task 2: Key Findings and Future Plans

- Pressure management via optimized brine extraction allows for significant reduction in brine extraction volumes if pressure is a concern at local targets with known locations (i.e., critically stressed fault, distant oil and gas field, other CO<sub>2</sub> storage projects)
- > The methodology, if successfully demonstrated for more complex scenarios, can be a useful planning and design tool for CO<sub>2</sub> storage projects where pressurization is a concern
- Next steps are applications to more complex scenarios and a real sequestration site

## Appendix: Gantt Chart for FY12 and FY13



| Year                                        | FY12 |    | FY13 |    |    |    |    |    |
|---------------------------------------------|------|----|------|----|----|----|----|----|
| Quarter                                     | Q1   | Q2 | Q3   | Q4 | Q1 | Q2 | Q3 | Q4 |
| Task 1: Basin-Scale and Local-Scale         |      |    |      |    |    |    |    |    |
| Simulation Models                           |      |    |      |    |    |    |    |    |
| Basin-scale model - development phase:      | Α    |    |      |    |    |    |    |    |
| Data collection and integration plan        | A    |    |      |    |    |    |    |    |
| Basin-scale model - development phase:      |      |    | В    |    |    |    |    |    |
| Basin-scale model setup                     |      |    |      |    |    |    |    |    |
| Basin-scale model - application phase:      |      |    |      |    |    | Е  |    |    |
| Assess dynamic storage capacity             |      |    |      |    |    |    |    |    |
| Basin-scale model - application phase:      |      |    |      |    |    |    |    |    |
| Assess pressure buildup and environmental   |      |    |      |    |    |    |    | F  |
| impact for a variety of realistic scenarios |      |    |      |    |    |    |    |    |
|                                             |      |    |      |    |    |    |    |    |
| Task 2: Evaluate Pressure Management        |      |    |      |    |    |    |    |    |
| Schemes via Brine Extraction                |      |    |      |    |    |    |    |    |
| Develop and apply automated optimization    |      |    |      |    |    |    |    |    |
| method to optimize IDPM options for:        |      | С  |      |    |    |    |    |    |
| Simplified sequestration scenarios          |      |    |      |    |    |    |    |    |
| and apply automated optimization method     |      |    |      |    |    |    |    |    |
| to optimize IDPM options for:               |      |    |      | D  |    |    |    |    |
| Complex sequestration scenarios             |      |    |      |    |    |    |    |    |
| Develop and apply automated global          |      |    |      |    |    |    |    |    |
| optimization methods to optimize IDPM       |      |    |      |    |    | G  |    |    |
| options for heterogeneous systems and       |      |    |      |    |    |    |    |    |
| variable well locations                     |      |    |      |    |    |    |    |    |
| Design and optimize IDPM options for a      |      |    |      |    |    |    |    | н  |
| real field site                             |      |    |      |    |    |    |    |    |

## Appendix: Milestone Log for FY12 and FY13



#### Milestone A (Task 1), Q1 (12/31/11)

Title: Develop data collection and integration plan (including data formats and schedule) for model inputs to be provided by EERC and AITF

#### Milestone B (Task 1), Q3 (6/30/12)

Title: Finalize setup of basin-scale simulation model including model domain, boundaries, and grid development

#### Milestone C (Task 2), Q2 (3/31/12)

Title: Develop and apply automated inverse modeling method (such as iTOUGH2) coupled to an analytical solution to design and optimize IDPM options for simplified sequestration scenarios

#### Milestone D (Task 2), Q4 (9/30/12)

Title: Develop and apply automated inverse modeling method (such as iTOUGH2) coupled to a multi-phase numerical simulation model to design and optimize IDPM options for complex scenarios

#### Milestones E (Task 1), Q2 (3/31/13)

Title: Apply the developed basin-scale model for the worst-storage scenario to assess dynamic storage capacity

#### Milestones F (Task 1), Q4 (9/30/13)

Title: Apply the developed basin-scale model to a variety of future storage scenarios to assess pressure buildup and environmental impact

#### Milestone G (Task 2), Q2 (3/31/13)

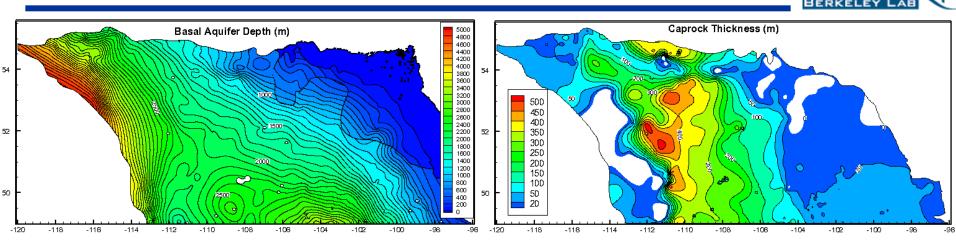
Title: Develop and apply automated global optimization methods to optimize IDPM options for heterogeneous systems and variable well locations

#### Milestone H (Task 2), Q4 (9/30/13)

Title: Design and optimize IDPM options for a real field site

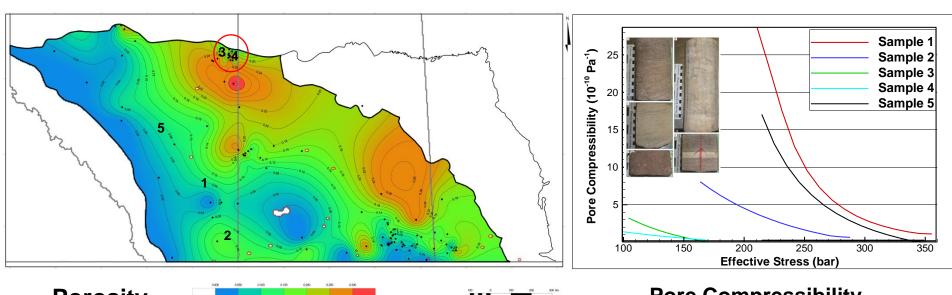
## **Appendix: Bibliography 2008-2012**




- Cihan, A., Zhou, Q., Birkholzer, J.T., Kraemer, S.R., 2012, Flow in anisotropic multilayered aquifer systems with leaky wells and aquitards: Water Resources Research (submitted)
- Cihan, A., Birkholzer, J.T., and Zhou, Q., 2012, Pressure buildup and brine migration in CO<sub>2</sub> storage systems with multiple leakage pathways: Application of a new analytical solution. Ground Water, doi: 10.1111/j.1745-6584.2012.00972.x, available at onlinelibrary.wiley.com/journal/10.1111/(ISSN)1745-6584/issues
- Birkholzer, J.T., Cihan, A., and Zhou, Q., 2012, Impact-driven pressure management via targeted brine extraction Conceptual studies of CO<sub>2</sub> storage in saline formations, International Journal of Greenhouse Gas Control, 7(March), 168-180, doi:10.1016/j.ijggc.2012.01.001. available at http://www.journals.elsevier.com/international-journal-of-greenhouse-gas-control/
- Cihan, A., Zhou, Q., and J.T. Birkholzer, 2011, Analytical solutions for pressure perturbation and fluid leakage through aquitards and wells in a multilayered system, Water Resources Research, 47, W10504, doi:10.1029/2011WR010721. available at www.agu.org/
- Birkholzer, J.T., Nicot, J.-P., Oldenburg, C.M., Zhou, Q., Kraemer, S., and Bandilla, K., 2011, Brine flow up a well caused by pressure perturbation from geologic carbon sequestration: Static and dynamic evaluations, International Journal of Greenhouse Gas Control 5(4), 850-861, doi:10.1016/j.ijggc.2011.01.003. available at http://www.journals.elsevier.com/international-journal-of-greenhouse-gas-control/
- Zhou, Q., and Birkholzer, J.T., 2011, On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO<sub>2</sub>, Greenhouse Gases: Science and Technology 1, 11-20, DOI: 10.1002/ghg3.001. available at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2152-3878
- Zhou, Q., Birkholzer, J.T., and Tsang, C.-F., 2011, Reply to Comments by Veling on "A Semi-Analytical Solution for Large-Scale Injection-Induced Pressure Perturbation and Leakage in a Laterally Bounded Aquifer-Aquitard System" by Zhou, Birkholzer, and Tsang, Transport in Porous Media 86, 357-358. available at http://www.springerlink.com/content/100342/?MUD=MP
- Zhou, Q., Birkholzer, J.T., Mehnert, E., Lin, Y.-F., and Zhang, K., 2010, Modeling basin- and plume-scale processes of CO<sub>2</sub> storage for full-scale deployment, Ground Water, 48(4), 494-514. available at onlinelibrary.wiley.com/journal/10.1111/(ISSN)1745-6584/issues
- Birkholzer, J.T., and Zhou, Q., 2009, Basin-scale hydrogeologic impacts of CO<sub>2</sub> storage: Regulatory and capacity implications, International Journal of Greenhouse Gas Control 3 (6), 745–756. available at http://www.journals.elsevier.com/international-journal-of-greenhouse-gas-control/
- Zhou, Q., Birkholzer, J.T., and Tsang, C.-F., 2009, A semi-analytical solution for large-scale injection-induced pressure perturbation and leakage in a laterally bounded aquifer-aquitard system, Transport in Porous Media, 78(1), 127-148. available at http://www.springerlink.com/content/100342/?MUD=MP
- Birkholzer, J.T., Zhou, Q., and Tsang, C.-F., 2009, Large-scale impact of CO<sub>2</sub> storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems, International Journal of Greenhouse Gas Control 3, 181-194. available at http://www.journals.elsevier.com/international-journal-of-greenhouse-gas-control/
- Zhou, Q., Birkholzer, J.T., Tsang, C.-F., and Rutqvist, J., 2008, A method for quick assessment of CO<sub>2</sub> storage capacity in closed and semiclosed saline aquifers: International Journal of Greenhouse Gas Control 2, 626-639. available at http://www.journals.elsevier.com/international-journal-of-greenhouse-gas-control/

## **Backup**




## **Basal Aquifer – Canadian Part**





**Basal Aquifer Depth** 

**Caprock Thickness** 



**Porosity** 

## Brine Extraction and Disposition Economics



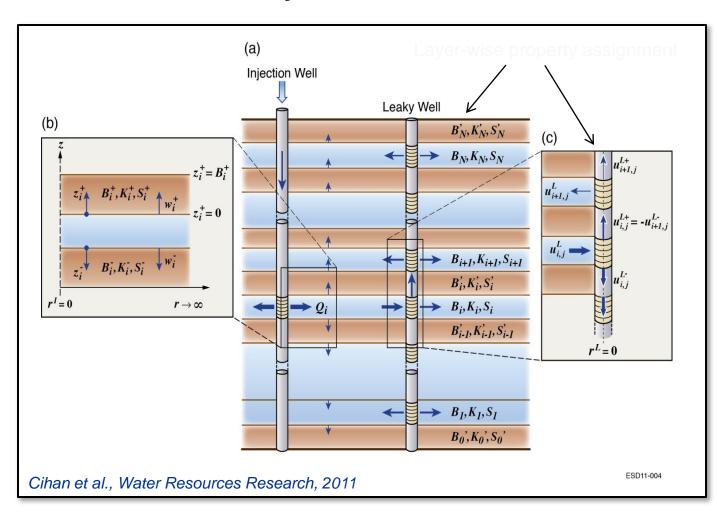
- Construction of wells and treatment/disposal facilities
- Operating cost (pumping, treatment, disposal, discharge)
- Transportation
- Permitting, monitoring, reporting

| Management Practice  | Cost Range (\$/bbl)* | Cost to CCS (\$/ton CO <sub>2</sub> ) |
|----------------------|----------------------|---------------------------------------|
| Reverse Osmosis      | \$1.00-\$3.50        | \$8.80-\$31.00                        |
| Thermal Distillation | \$6.00-\$8.50        | \$53.00-\$75.00                       |
| UIC Injection        | \$0.05-\$4.00        | \$0.45-\$35.00                        |
| Evaporation          | \$0.40-\$4.00        | \$3.50-\$35.00                        |

<sup>\*</sup>Costs do not include transportation

## Brine extraction can be a significant factor in the economic viability of a CCS

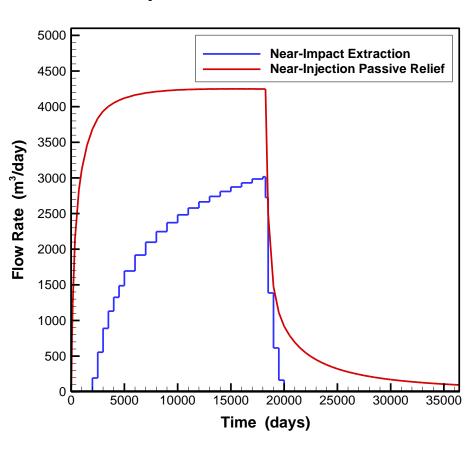
Based on Harto et al., 10th Annual Conference on CCS, Pittsburgh, May 2011

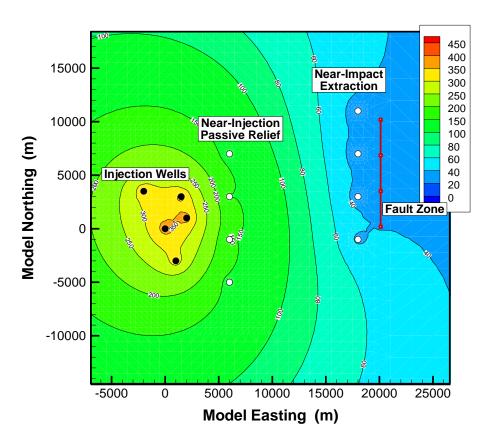

## **Analytical Solution**



## Single-Phase Flow in Multi-Layer Systems with Multiple Active and/or Leaky Wells

#### **Assumptions**


- Far-field pressure change in response to CO<sub>2</sub> injection approximated by single-phase model with volume-equivalent injection
- Aquifers and aquitards are homogeneous and isotropic, and have uniform thickness and infinite horizontal extent
- Flow is horizontal in aquifers, and vertical in aquitards
- Flow through leaky wells is laminar and governed by Darcy's law




## **Combined Passive Relief and Active Extraction for Fixed Well Location**

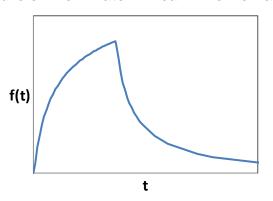


Near-impact active pumping and near-injection passive pressure relief. Pumping rates optimized with iTOUGH2 inversion and Levenberg-Marquardt algorithm.

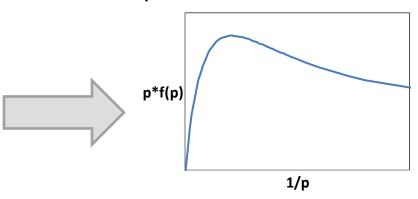




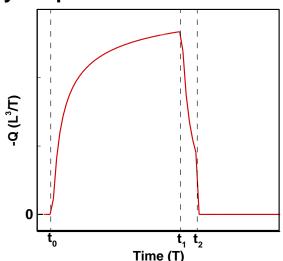
Flow Rate


**Head Change at 50 Years** 

## Improvements to Solution Procedure




#### **Efficiency: Parameter Estimation in Laplace Domain**


Pressure or Flow Rate in Real Time Domain



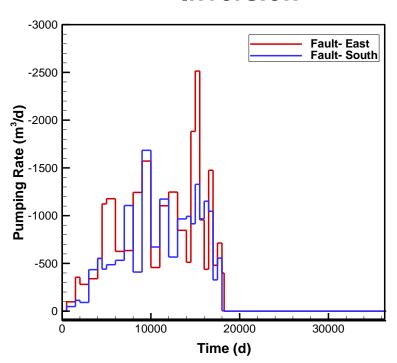
**Laplace Pressure or Flow Rate** 



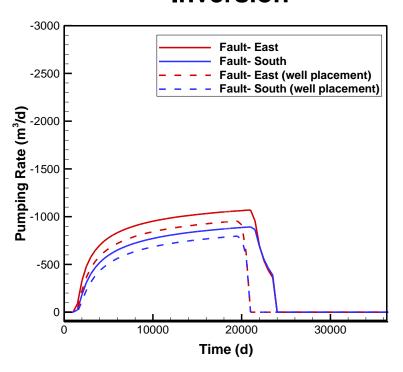
#### Stability: Represent evolution of extraction rate with empirical continuous function



#### **Function with Six Fitting Parameters**


$$Q(t) = \begin{cases} 0 & ; \ 0 < t \le t_0 \\ Q_0 erfc \ b / \sqrt{t - t_0} & ; \ t_0 < t \le t_1 + t_0 \\ Q_0 erfc \ b / \sqrt{t - t_0} & -Q_1 erfc \ b / \sqrt{t - t_1 - t_0} & ; \ t_0 + t_1 < t \le t_2 \\ 0 & ; \ t_2 < t \end{cases}$$

## **Improved Multi-Criteria Optimization**




### **Empirical Continuous Function for Pumping Evolution**

## Stepwise Independent Inversion



## Continuous Function Inversion



### **Pumping Rate**