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Coal Direct Chemical Looping Retrofit to Pulverized
Coal Power Plants for In-Situ CO, Capture

Period of Performance: 2009-2012

Total Funding ($3.98 million):
e U.S. Department of Energy, National Energy Technology Laboratory ($2.86 million)
e Ohio Coal Development Office (5300,000)
* The Ohio State University (5487,000)
* |Industrial Partners ($639,000)

Major Tasks:
* Phase I: Selection of iron-based oxygen carrier particle
e Phase ll: Demonstration of fuel reactor (coal char and volatile conversion) at 2.5 kW, scale and
cold flow model study
e Phase lll: Demonstration of integrated CDCL system at 25 kW, scale and techno-economic
analysis of CDCL process
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AMERICA’S EMERGY STARTS HERE. —
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%% CDCL Process Concept
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Sequestration
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Indirect combustion  H,atT,-H atT,

Reducer: Coal + Fe,0; - Fe/FeO +CO, + H,0 (endothermic) CDCL Process reduces exergy loss by
recuperating the low grade heat while
producing a larger amount of high
grade heat

Oxidizer: Air + Fe/FeO - Fe,0; + Spent Air  (exothermic)

Overall:  Coal + Air - CO, + H,0 + Spent Air (exothermic)



TOHIOE Coal-Direct Chemical Looping Process for Retrofit/Repower
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Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, “Combustion Looping Using
Composite Oxygen Carriers” U.S. Patent No. 7,767,191 (2010, priority date 2003) B.w

[ 8
The CDCL process can be also used for high efficient hydrogen production ekl

a McDermott company



$i¥ Modes of CFB Chemical Looping Reactor Systems

UNIVERSITY
Mode 1- reducer: fluidized bed or co-current Mode 2 - reducer: gas-solid (OC) counter-
gas-solid (OC) flows current dense phase/moving bed flows
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Reducer Desigh Comparison Mode 1 versus Mode 2 Using Fe-Carrier

Reducer Mode 1 Mode 2
: : Bubbling, turbulent, fast Moving packed, or multistage
Operation Regime -, -
P J fluidized, or spouted bed fluidized bed
Gas Solid Contacting Pattern Mixed/Cocurrent Countercurrent
Controllability on Fuel and OC Poor, due to back mixing High

Conversions

and gas channeling

Maximum Iron oxide Conversion

11.1% (to Fe30,)

>50% (to Fe & FeO)

Solids circulation rate High Low
Ash Separation Technique Separate Step In-Situ

Subsequent Hydrogen Production No Yes

Particle size, um 100-600 1000-3000
Reducer gas velocity*, m/s <0.4 >1.0
Reactor size for the same fuel
. _ Large Small
processing capacity

Hydrodynamics effects on scaling up Large Small

*Reducer gas velocity calculated at 900 °C, 1 atm
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CDCL Fuel Feed Tests Studied

Fuel Flow Fuel
Fuel Feedstock Type (Ib/hr) Enhancer Conversion
Coal volatile CH, 0.1-0.4 H, 99.80%
Lignite 0.7-2.0 | CO,/H,0 94.90%
Coal char Meteg})‘f{‘;glcal 0.05-3 |CO,/H,0| 50-97.30%
Sub-Bituminous | 0.05-7 |CO,/H,0| 60 -99+%
Coal Bituminous 0.05-3 |CO,/H;0 70 - 95%
Anthracite 0.2-0.7 |CO,/H,0 95.50%
Biomass Wood pellets 0.1 CO, 75 -99%

Combined >530 hours of operational experience

CO/H, Fuel feedstock tested in SCL sub-pilot process for over

300 hours of successful operation

Successful results for all coal feedstock tested




%jﬁ% OSU CDCL Chemical Looping Process Development
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300+ hours operation with

>99% volatile conversion
in Stage | test, >95% char

conversion in Stage [l Test

More than 300 types of Fuel Tested
particle tested. A low cost, » Syngas
robust, highly reactive, * Natural gas
@ | and O* conductive - Biomass
© | composite particle is - Met coke
O | obtained. + Lignite char
n * PRB
« lllinois 6 ,
» Pittsburgh 8 £
» Anthracite

Sub-Pilot CDCL Integrated Tests
200+ hours operation with >80%
Bench Scale Tests solid fuel conversion, smooth
solid circulation, gas sealing and
in-situ ash removal




25 kW,,, Sub-Pilot Demonstration

e Fully assembled and
operational

e >200 hours of Operational
experience

— 3-day continuous operation
e Harmonious solid circulation

e Confirmed non-mechanical
gas sealing under reactive
conditions

e 12 test campaigns completed



e 25 kW, Sub-Pilot Demonstration
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3-day Sub-Pilot Continuous Run - Sample Results
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Concentration CO2 (%)
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3-day Sub-Pilot Continuous Run - Sample Results
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Sub-Pilot Continuous Run - Sample Results

Conversion (%)

Carbon Conversion Profile Gas Concentration Profile
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Mode II: Moving Bed (OSU)
Reactor Development



OO CDCL Moving Bed Reactor — Stage |
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Phase Diagram — Thermodynamic Restrictions
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Operating Equation for Moving Bed Reducer
Fixed solid molar flowrate n., e YZM“ gnm' Yewez
My, + A0, + M Countercurrent moving bed:

Oxygen content for solid V=

R, 3208 £

y Z+0Z gstraight operation line with
negative slope

Fixed gas molar flowrate n, + ny,0,

M0
Y= .

Py, ¥y 0

Similarly, Concurrent fluidized
bed: straight operation with
positive slope

Oxygen content for gas

Oxygen Balance Mee ¥z

nFc'(yz+&3 - y:) = (nﬁl + n‘];zo)(x:+m - x:)

Az = 0=dy/dx=(ny, +n, )/ ng,




OHIO CDCL Moving Bed Reactor — Stage |
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Operation Diagram

Fe

FeO

Solid Conversion

Fe;0O,
Fe,0O4

Gas Conversion

The operating line is straight when feeding ratio is fixed: solid line
represents countercurrent moving bed operation, dash line represents
co-current fluidized bed operation



Oxygen Carrier Development



Oxygen Carrier Particle Development

Ellingham Diagram: Selection of Primary Metal
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Oxygen Carrier Particle Development

OSU Particle (over 300 particles) Performance
ngh Reactivity High Carbon Deposition Tolerance

UNIVERSITY
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Data Analysis and Modeling



T%f{_ll%ﬁ TGA - Oxygen Carrier Particle Reduction Kinetics
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Three-interface unreacted shrinking core

model (USCM) * 1 «
» |sothermal and isobaric conditions ¥
. I o
e The pellet volume is unchanged vep
* First order reversible reaction
. £06
Three factors that affect the overall reaction 3
@
I’ate % simulation radius=0.25mm
) ) ; 004 simulation radius=1.0mm
- simulation radius=1.4mm
 Diffusion through the gas film B opesa AT
« Intraparticle diffusion sl X oxperiment 1.0oraciues0.8 mm
. . . Q experiment 0.8>radius>0.6 mm
 Chemical reaction at reaction O experiment0.25>radius>0 mm
Interface O A IR TR BN
- . 10 t(rrl1r5|) 20 25
Reaction rates at each reaction step:
P A(A,+B,+B,+ F)+(4,+B,)(B,+F)(y-)) » »
' RTo |—[A(B,+B,+F)+B,(B +F)(y-y) - A(B.+F)(y-7. A= - g, - &R -(-R) " 9,
4B, + B, +I)+ B (B, + F)[(y=y,) = A,(B,+F)(y-y,) (1-R)*® k (1+1/K)) L 1-R)"*@-R)"® 2D,
;o= P {[(‘41—1_81+Bg)(‘4j+Bs+F)+‘43(85+F)](y—y;) } _(1_ R3)1/3_(1_ R2)1/3 dp B _1_(1_ R3)1/3 dp
" RTo |-[B,(4,+B,+F)+ 4 (B +F))(y=y)~(4,+B)B+F)y-,) 2 @1-R)"@1-R,)” 2D, ° (@1-R)” 2D,

I,

P[4 +B)(A,+ B, 4B+ F)+ A (B, + B4 F)) =)
F=1/k,

RT® =4, (B, + F))(y=3))~(4 + B)BA+F)(y =)
=(A+B)[A(A +B,+B,+ F)+ (A +B,)(B, + F)]+ A[A(B, + B, + F)+ B, (B, +F)]

Yanagiya T., Yagi J., Omori Y. 1979 reduction of iron oxide pellets in moving bed. Ironmaking and steelmaking, No.3 93-100



IO Bench Scale Testing
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Stage | — Volatile Conversion Stage Il — Char Conversion
Gas Fresh Fe,0,
outlet and char
[Motor == to GC
. » Ball valve
Light In ,
Window
_ Gas Out [ !
- [——— 1
Gas -
LUl sampling e———w. 1 _T:ermo:uuplfes
N - | T in heated section
Gas / solid _ Temperature ports [
Sample Out | T | Measurement =71 -
< — 1 1
¢ == O Enh — '—‘_‘l f—— ]
nhancing .
GES N c— gas inlet Screwfeeder
‘‘‘‘‘ -Motor

N, flushi
Reacted 2 HIUSNING
solids

Summary of Bench Scale Unit Testing Results

Stage | - Coal Volatile Stage Il - Coal Char Coal
Type of Fuel
CO, H, CH, Lignite char Bituminous char PRB Bituminous Anthracite
Fuel Conversion, % 99.9 99.8 94.9 95.2 >97 >95 95.5
CO, purity, % 99.9 98.8 99.23 99.1 - - 97.3

- Conducted in co-current mode, no gas analyzer was used to monitor the CO, purity.

300+ hours operation with >95% conversions of various types of fuel



ei® Bench Scale Testing - 1-D Reducer Modeling
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. Assumptions:

— Both gas and solid streams are in plug U
flow.

in

S?
— Three-interface USCM for representing

the overall reaction rate of the pellet

— Negligible temperature difference
between gas and solid.

J Governing Equations | _ _
g tq aztc,:_ugi a§C'+Zvn 6(1OI e

— Gas Phase %o p _dx
—  Solid Phase Ei_usEyy, od-e)
ot X g d,
. Numerical Methods
— Temporal terms are discretized by X
third order Runge-Kutta schemes

— Spatial terms are discretized by fifth
order schemes | U, Ci,



Bench Scale Testing - Stage | Modeling

eReactor modeling validated by previous ! ':I'
bench scale syngas test results I

OReaction : Iron Oxide reduced by g ——— sygas

: 08k ———— RM(Fe203-Fe304)

svgés- _ . | ———— RW{Fe304-Fe0)

Olnitial mole fraction of sygasingas: | RF(FeO-Fe)

72.9% I ——— R(Overall)

OMass fraction of Iron Oxide in 06} g’ :;s:zr;;:z&em)

particle : 60% [
oSolid feedrate: 12.87g/min
ODiameter of the reducer: 4.06 cm g4
oDensity of solids : 2500 g/cm?3
oVoidage of reducer 0.40g

oo

¢ ¢

ODiameter of solid: 4mm 0.2

0Gas feedrate: 1.683 mol/s g

OTemperature: T=1273K j

O Pressure: P=1 atm oL N T L1 L1 Ve
0 0.2 0.4 0.6 08 ¥

Bottom Z Top



CHIO Bench Scale Testing - Stage Il Modeling
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Stage Il Modeling Results Stage Il Bench Test Results
1
i 90% from — ¢
t~— modeling —— RM(Fe203-Fe304) oc co, N, -
R ——— RW(Fe304-Fe0) # | flowrate | flowrate | flowrate ( (':) Xc (%)
0.8 RF(FeO-Fe) (g/min) | (mL/min) | (mL/min)
B ——=—— R(Overall)
| CO2(volumefraction)
i CO(volumefraction) 7 WP-5mm, 200 200 1000 | 87.6
9.6 |
06 Test#7
i OP-
5 17 | 1.5mm, | 200 200 |1000 | 95.2
e 10.9

: Both individual particle kinetics model
B2 and moving bed reactor model have

I been developed and validated by

N A T S S T experimental results, and helped the
0 = b Lo 0.8 reducer design and operation

Bottom Top  optimization.
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== Process Simulation and Analysis

Systems Analysis Methodology

Performance of CDCL plant modeled using Aspen Plus® software

Results compared with performance of conventional pulverized coal (PC) power plants with
and without CO, capture

e U.S. Department of Energy, National Energy Technology Laboratory; Cost and Performance Baseline
for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity (November 2010)

e Case 11 — Supercritical PC plant without CO, capture
(“Base Plant”)

e Case 12 — Supercritical PC plant with MEA scrubbing system for post-combustion CO, capture
(“MEA Plant”)

All plants evaluated using a common design basis
e 550 MW, net electric output
* lllinois No. 6 coal: 27,113 kJ/kg (11,666 Btu/lb) HHV, 2.5% sulfur, 11.1% moisture as received
e Supercritical steam cycle: 242 bar/593°C/593°C (3,500 psig/1,100°F/1,100°F)
e 2>90% CO, capture efficiency (MEA and CDCL Plants)
e CO, compressed to 153 bar (2,215 psia)

Results are preliminary, will be used to guide further design improvements bl—ll[ld

UNIVERSITY
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- == Process Simulation and Analysis

Enhancer Gas
Recycle Compressor

Clean
Spent
Air to

Stack b co,
. o Condenser
| Wet Fabric|  169°C Fan Compressor
FGD Filter A co,
ID l : Product
Fan CO, + Fabric Filter 153 bar
H,0 & Acid Gas
1181°C Scrubber
Cyclone 2 Enhancer Gas
¢ (CO, + H0)
Ash / Carrier 1000°C
Particle Fines to < ;Z;:
Disposal A . .
Cyclone 1 « ® Indicates r|1eat is recovered for
/ Spent Air steam cycle
Carrier Particle _ + Fe,O4
Makeup (Fe,O,) - 1195°C
Fe,O,
e ™)
A
Reducer :
Coal > " 1 bar
15°C Combustor
1 bar CO"?". ) ~1 bar
207,072 kg/h Pulverizing \_ )¢
a -~

Fe/FeO El Air
15°C
FD 1 bar OHIO
Fan
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T== Aspen Plus® Modeling Results

Base CDCL
Plant Plant

207,072

Coal Feed, kg/h 185,759 256,652
CO, Emissions, kg/MWh_ . 802 111
CO, Capture Efficiency, % 0 90.2
Solid Waste,? kg/MWh_, 33 45
Net Power Output, MW, 550 550
Net Plant HHV Heat Rate, ki/kWh 9,165 12,663
(Btu/kWh) (8,687) (12,002)
Net Plant HHV Efficiency, % 39.3 28.5
Energy Penalty,® % - 27.6

agxcludes gypsum from wet FGD. PRelative to Base Plant; includes energy for CO, compression.

28
97.0
43

548

10,248
(9,713)

35.2

10.6

OHIO

UNIVERSITY



—== First-Year Cost of Electricity

Base CDCL
Plant Plant

First-Year Capital (S/MWh) 31.7 44.2
Fixed O&M ($/MWh) 8.0 13.0 9.6
Coal (S/MWh) 14.2 19.6 15.9
Variable O&M (S/MWHh) 5.0 8.7 8.7
TOTAL FIRST-YEAR COE (S/MWh) 58.9 100.9 78.4

H/_/

A=+71%
\\§ J
Y

A=+33%
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Accomplishments/Future Plans

Completed

Synthesis/screening of >300 oxygen carrier particles and selected
particles with optimal performance for further testing

300 hrs of 2.5 kW, bench-scale operations achieving volatile and coal
char conversions of >95%

Cold flow model demonstrations evaluating solids/gas handling

>230 hrs of integrated 25 kW, sub-pilot scale operations achieving 90-
99+% coal conversion

CDCL process can achieve 97% CO, capture and compression with
10.6% energy penalty relative to a conventional, supercritical PC plant
without CO, capture

The CDCL process has the potential to meet DOE’s goal of 290% CO,
capture at no more than a 35% increase in cost of electricity

Future Work

Continued integrated 25 kWth sub-pilot demonstration
— Extended continuous demonstration
— Varied operating parameters (e.g. coal type, enhancer gas, solid circulation)
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