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Coal Direct Chemical Looping Retrofit to Pulverized 
Coal Power Plants for In-Situ CO2 Capture 

• Period of Performance: 2009-2012 

• Total Funding ($3.98 million): 
• U.S. Department of Energy, National Energy Technology Laboratory ($2.86 million) 

• Ohio Coal Development Office ($300,000) 

• The Ohio State University ($487,000) 

• Industrial Partners ($639,000) 

• Major Tasks: 
• Phase I: Selection of iron-based oxygen carrier particle 

• Phase II: Demonstration of fuel reactor (coal char and volatile conversion) at 2.5 kWt scale and 
cold flow model study 

• Phase III: Demonstration of integrated CDCL system at 25 kWt scale and techno-economic 
analysis of CDCL process 
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Reducer: Coal + Fe2O3  →  Fe/FeO + CO2 + H2O   (endothermic) 

Oxidizer: Air + Fe/FeO  →  Fe2O3 + Spent Air       (exothermic) 

Overall: Coal + Air  →  CO2 + H2O + Spent Air    (exothermic) 

CDCL Process reduces exergy loss by 
recuperating the low grade heat while 
producing a larger amount of high 
grade heat 
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Coal-Direct Chemical Looping Process for Retrofit/Repower 

Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, “Combustion Looping Using 
Composite Oxygen Carriers” U.S. Patent No. 7,767,191 (2010, priority  date 2003) 

The CDCL process can be also used for high efficient hydrogen production 
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Modes of CFB Chemical Looping Reactor Systems 
 Mode 1-  reducer: fluidized bed or co-current  

gas-solid  (OC) flows 
 Mode 2 -  reducer: gas-solid (OC) counter-

current dense phase/moving bed flows 

 

 

Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, “Combustion Looping 
Using Composite Oxygen Carriers” U.S. Patent No. 7,767,191 (2010) 
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Reducer Mode 1 Mode 2 

Operation Regime 
Bubbling, turbulent, fast 
fluidized, or spouted bed 

Moving packed, or multistage 
fluidized bed 

Gas Solid Contacting Pattern Mixed/Cocurrent Countercurrent 

Controllability on Fuel  and OC 
Conversions 

Poor, due to back mixing 
and  gas channeling 

High 

Maximum Iron oxide Conversion 11.1% ( to Fe3O4) >50% (to Fe & FeO) 

Solids circulation rate High Low 

Ash Separation Technique Separate Step In-Situ 

Subsequent Hydrogen Production No Yes 

Particle size, μm 100-600  1000-3000 
Reducer gas velocity*, m/s <0.4 >1.0 

Reactor size for the same fuel 
processing capacity 

Large Small 

Hydrodynamics effects on scaling up  Large Small 
*Reducer gas velocity calculated at 900 °C, 1 atm 

Reducer Design Comparison Mode 1 versus Mode 2 Using Fe-Carrier 
 



CDCL Fuel Feed Tests Studied 

Fuel Feedstock Type Fuel Flow 
(lb/hr) 

Enhancer 
Fuel 

Conversion 
Coal volatile CH4 0.1-0.4 H2 99.80% 

Coal char  
Lignite 0.7-2.0 CO2/H2O 94.90% 

Metallurgical 
Coke 0.05-3 CO2/H2O 50-97.30% 

Coal  
Sub-Bituminous  0.05-7 CO2/H2O 60 – 99+% 

Bituminous 0.05-3 CO2/H2O 70 – 95% 
Anthracite 0.2-0.7 CO2/H2O 95.50% 

Biomass Wood pellets 0.1 CO2 75 – 99% 

• Combined >530 hours of operational experience 

• CO/H2 Fuel feedstock tested in SCL sub-pilot process for over 
300 hours of successful operation 

• Successful results for all coal feedstock tested 

 



OSU CDCL Chemical Looping Process Development 



25 kWth Sub-Pilot Demonstration 

• Fully assembled and 
operational 

• >200 hours of Operational 
experience 
– 3-day continuous operation 

• Harmonious solid circulation  

• Confirmed non-mechanical 
gas sealing under reactive 
conditions 

• 12 test campaigns completed  

 

 

 



Gas Flow Control System 

Coal Injection System Gas Analyzer 

Gas Storage 

25 kWth Sub-Pilot Demonstration 

Process Control & Automation 



3-day Sub-Pilot Continuous Run - Sample Results 



Reducer Gas Outlet Concentration Profile (Run 2A) 

3-day Sub-Pilot Continuous Run - Sample Results 



• ~24-hour Operation 
• 90-99+% Carbon Utilization 
• ~99 vol.% CO2 Purity 
• ~0.6 vol.% CO and ~0.2 vol.% CH4 

– Higher than metallurgical coke due to higher volatile contents 
 

Sub-Pilot Continuous Run - Sample Results 

Carbon Conversion Profile Gas Concentration Profile 



Mode II: Moving Bed (OSU) 
Reactor Development 



Shaded area is not 
reducer operation  
zone 

CDCL Moving Bed Reactor – Stage I 
Phase Diagram – Thermodynamic Restrictions 

Operating Equation for Moving Bed Reducer 

Countercurrent moving bed: 
straight operation line with 
negative slope 
 
Similarly, Concurrent fluidized 
bed: straight operation with 
positive slope  



Operation  Diagram 
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The operating line is straight when feeding ratio is fixed: solid line 
represents countercurrent moving bed operation, dash line represents 
co-current fluidized bed operation 
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CDCL Moving Bed Reactor – Stage I 



Oxygen Carrier Development 



Ellingham Diagram: Selection of Primary Metal 

Oxygen Carrier Particle Development  
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Data Analysis and Modeling 



Three-interface unreacted shrinking core 
model (USCM) *  

• Isothermal and isobaric conditions  
• The pellet volume is unchanged  
• First order reversible reaction 

Three factors that affect the overall reaction 
rate 

• Diffusion through the gas film 
• Intraparticle diffusion 
• Chemical reaction at reaction 

interface  
Reaction rates at each reaction step: 

 

 

 

 

 

 

 
Yanagiya T., Yagi J., Omori Y. 1979 reduction of iron oxide pellets in moving bed. Ironmaking and steelmaking, No.3 93-100 
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Stage I – Volatile Conversion Stage II – Char Conversion 

Bench Scale Testing 

Type of Fuel 
Stage I - Coal Volatile Stage II - Coal Char Coal  

CO, H2 CH4 Lignite char Bituminous char PRB Bituminous Anthracite 

Fuel Conversion, % 99.9 99.8 94.9 95.2 >97 >95 95.5 

CO2 purity, % 99.9 98.8 99.23 99.1 -* - 97.3 

- Conducted in co-current mode, no gas analyzer was used to monitor the CO2 purity. 

300+ hours operation with >95% conversions of various types of fuel  

Summary of Bench Scale Unit Testing Results 



• Assumptions: 
– Both gas and solid streams are in plug 

flow. 

– Three-interface USCM for representing 
the overall reaction rate of the pellet 

– Negligible temperature difference 
between gas and solid. 

• Governing Equations 
– Gas Phase 

– Solid Phase 

• Numerical Methods 
– Temporal terms are discretized by 

third order Runge-Kutta schemes 

– Spatial terms are discretized by fifth 
order schemes 
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Bench Scale Testing - 1-D Reducer Modeling 



•Reactor modeling validated by previous 
bench scale syngas test results 

oReaction： Iron Oxide reduced by 
sygas: 
oInitial mole fraction of sygas in gas: 
72.9% 
oMass fraction of Iron Oxide in 
particle：60% 
oSolid feedrate: 12.87g/min 
oDiameter of the reducer: 4.06 cm 
oDensity of solids：2500 g/cm3 

oVoidage of reducer 0.40g 
oDiameter of solid: 4mm 
oGas feedrate: 1.683 mol/s 
oTemperature:  T=1273K 
o Pressure: P=1 atm 

 
Bottom Top 

Bench Scale Testing - Stage I Modeling 



Both individual particle kinetics model 
and moving bed reactor model have 
been developed and validated by 
experimental results, and helped the 
reducer design and operation 
optimization. 
 

# 
OC 

flowrate 
(g/min) 

 CO2 
flowrate 
(mL/min) 

N2, 
flowrate 
(mL/min) 

T, 
( C) XC (%) 

7 WP-5mm, 
9.6 200 200 1000 87.6 

17 
OP-

1.5mm, 
10.9 

200 200 1000 95.2 

Stage II Modeling Results Stage II Bench Test Results 

Top Bottom 

87.6% in  
Test # 7 

90% from  
modeling 

Bench Scale Testing - Stage II Modeling 



Systems Analysis Methodology 
• Performance of CDCL plant modeled using Aspen Plus® software 

• Results compared with performance of conventional pulverized coal (PC) power plants with 
and without CO2 capture 

• U.S. Department of Energy, National Energy Technology Laboratory; Cost and Performance Baseline 
for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity (November 2010) 

• Case 11 – Supercritical PC plant without CO2 capture 
(“Base Plant”) 

• Case 12 – Supercritical PC plant with MEA scrubbing system for post-combustion CO2 capture 
(“MEA Plant”) 

• All plants evaluated using a common design basis 
• 550 MWe net electric output 

• Illinois No. 6 coal: 27,113 kJ/kg (11,666 Btu/lb) HHV, 2.5% sulfur, 11.1% moisture as received 

• Supercritical steam cycle: 242 bar/593°C/593°C (3,500 psig/1,100°F/1,100°F) 

• ≥ 90% CO2 capture efficiency (MEA and CDCL Plants) 

• CO2 compressed to 153 bar (2,215 psia) 

• Results are preliminary, will be used to guide further design improvements 

Process Simulation and Analysis 
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Aspen Plus® Modeling Results  

aExcludes gypsum from wet FGD.  bRelative to Base Plant; includes energy for CO2 compression. 

Base 
Plant 

MEA 
Plant 

CDCL 
Plant 

Coal Feed, kg/h 185,759 256,652 207,072 

CO2 Emissions, kg/MWhnet 802 111 28 

CO2 Capture Efficiency, % 0 90.2 97.0 

Solid Waste,a kg/MWhnet 33 45 43 

Net Power Output, MWe 550 550 548 

Net Plant HHV Heat Rate, kJ/kWh 
(Btu/kWh) 

9,165 
(8,687) 

12,663 
(12,002) 

10,248 
(9,713) 

Net Plant HHV Efficiency, % 39.3 28.5 35.2 

Energy Penalty,b % - 27.6 10.6 



First-Year Cost of Electricity 

Base 
Plant 

MEA 
Plant 

CDCL 
Plant 

First-Year Capital ($/MWh) 31.7 59.6 44.2 

Fixed O&M ($/MWh) 8.0 13.0 9.6 

Coal ($/MWh) 14.2 19.6 15.9 

Variable O&M ($/MWh) 5.0 8.7 8.7 

TOTAL FIRST-YEAR COE ($/MWh) 58.9 100.9 78.4 

∆ = +71% 

∆ = +33% 



Completed 
• Synthesis/screening of >300 oxygen carrier particles and selected 

particles with optimal performance for further testing 
• 300 hrs of 2.5 kWt bench-scale operations achieving volatile and coal 

char conversions of >95% 
• Cold flow model demonstrations evaluating solids/gas handling 
• >230 hrs of integrated 25 kWt sub-pilot scale operations achieving 90-

99+% coal conversion 
• CDCL process can achieve 97% CO2 capture and compression with 

10.6% energy penalty relative to a conventional, supercritical PC plant 
without CO2 capture 

• The CDCL process has the potential to meet DOE’s goal of ≥90% CO2 
capture at no more than a 35% increase in cost of electricity 

Future Work 
• Continued integrated 25 kWth sub-pilot demonstration 

– Extended continuous demonstration 
– Varied operating parameters (e.g. coal type, enhancer gas, solid circulation) 

 
 

Accomplishments/Future Plans 



Thanks 
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