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Motivation
 Current technologies fall substantially short of DOE targets
   2020 DOE NETL Sequestration Program post-combustion capture goal 

90% capture with less than a 35% increase in COE

 Industry/DOE benchmark technology for capture of 
CO2: Amine Absorption 
   Parasitic loss: 90% CO2 capture from flue gas will require      

approximately 22-30% of the produced plant power

   Estimated CO2 capture cost: $40-$100/ton of CO2 and an increase in 
the cost of electricity (COE) of 50-90%

Membrane Opportunities
 Estimated CO2 capture cost using membranes* is substantially 

lower than current DOE benchmarks
 Advantages of membrane-based separations over other 

separations technologies
  Smaller footprints, simpler operation, better scalability & modularity

 Membrane performance scales linearly with permeance – 
Less than $10/ton CO2 captured at 10,000 GPU (extrapolated)

 Existing membrane materials have limited selectivity, 
productivity, chemical resistance, & mechanical durability

 Compelling need for new materials and processing methods to 
enhance productivity and selectivity

 Compounds entirely consisting of ions resembling the ionic melts of metallic salts
 Liquids at ambient temperature and over a broad temperature range from -96 to 300 °C
  Negligible vapor pressure
 Beneficial properties: high solubility/perm selectivity for CO2, low flammability, ex-

cellent thermal/chemical stability
 Easily tailored for specific properties by manipulating/adding functional groups
 Lack mechanical stability necessary for industrial utilization as thin film gas separation 

membranes

 Formed by incorporating low molecular weight organic gelators (LMOGs) 
into RTILs 

  - Physical gelation: H-bonding, van der Waals interactions, pi-pi stacking 
    between LMOG and RTIL 
 Gel-RTIL maintains CO2 affinity and permeability characteristics of RTILs 
  - Low fraction of LMOG required, typically 1-5 wt%
  - Free RTIL provides for fast liquid-like diffusion and enhanced flux
 Increase in mechanical and thermal properties of RTIL upon gelation
 Demonstrated high perm-selectivity for CO2 over other components (coal-

fired power plants exhaust gas)

 Materials formed by in-situ polymerization of RTILs containing polymerizable groups with various fractions of non-polymerizable RTIL
 Resulting solid-liquid composites impart flexibility in controlling the material CO2/N2 perm-selectivity character with mechanical integrity 

imparted by the polymerized component

 Ultrasonic atomization based material deposition process on microporous polymeric substrates for fabrication of 
commercially attractive composite membranes

Low Molecular Weight Organic Gelators (LMOGs)

 Room-Temperature Ionic Liquids (RTILs)
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Red circle data from Robeson, Journal of Membrane Science, 320 
(2008) p 390.

* Data from Merkel et. al., Journal of Membrane Science, 359  (2010) p 126.

CO2 permeability enhancements of >10X observed for 
RTIL/Poly(RTIL) as compared to neat Poly(RTIL)
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 RTIL/Poly(RTIL) Composites

 Gel-RTILs

Objectives & Approach
 Design mechanically and chemically robust room temperature 

ionic liquid (RTIL)-based selective layers (SLs)
 - Evaluate tailored gel-RTILs, RTIL/Poly(RTIL) composites, 

incorporation of task-specific CO2 complexation chemistries
  CO2 permeability exceeding 1000 barrer
  CO2/N2 selectivity of at least 20

 Develop ultrasonic spray coating technology (USCT)
 - Commercially viable development of USCT which enables 

controlled ultra-thin SL deposition on commercially 
attractive support platforms
  Fabricate < 100 nm thick selective layer/microporous support   

composites
  1000 barrer and 100 nm thick SL: Permeance = 10,000 GPU

 Devise technically and economically viable membrane 
performance characteristics and process scenarios for CO2 
capture from coal derived flue gas

 Development and optimization of ultrasonic coating technique (USCT)

Illustrations from www.sonotek.com
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0 16 41
10 46 36
30 72 36
50 173 36

 Curable Poly(RTIL)s and Composites Thereof
 Imidazolium based polymers with reactive “ene” groups for free radical curing reactions with 

various amounts of non-polymerizable RTIL
 Reactive polymer solutions have higher viscosities compared to monomer solutions
 Pore penetration can likely be reduced by faster reaction time and use of macromolecules
 Composite materials are formed by cross-linking curable polymers in the presence of free RTIL
 Unbound RTIL monomer can be doped into system to modify the cross-linking density of the 

network and thus perm-selectivity characteristics

Gel-RTIL

Ultra-Thin Membrane Fabrication, Optimization, and Testing

 Proven technology for industrial-scale thin film applications
 Large-scale custom thin film deposition systems employing ultrasonic 

atomization technology readily achievable
 Industrial deployment envisioned as spiral-wound modules
  Tailorable, precisely controlled, repeatable deposition characteristics
 Soft, low-velocity spray reduces pore penetration into support substrates

 Achieve formation of an ideal selective layer on highly porous support
  - Dense, ultra-thin, cohesive selective layer with minimal pore penetration and good 

adhesion to support layer
  Tune coating parameters to effect and control coating layer formation
  - System control parameters include: liquid flow rate, spray geometry, coating 

profile,  raster speed, substrate temperature, in-situ IR and UV irradiation

 Fabrication of a poly(RTIL) composite membrane using USCT - Example Case

Data of poly(vhim)Tf2N SILM from Hudiono et al, Journal of Membrane Science, 370 (2011) p 141.

 Poly(RTIL) selective layers were deposited on commercially attractive porous substrates using USCT
 Dense, sub-micron thick selective layers were successfully applied to substrate with minimal pore penetration
 Demonstrated defect-free poly(RTIL) composite membrane with CO2 permeance of 317 GPU - approximately 212 nm effective thickness!

- Fabricated numerous membranes with CO2 permeance ≥ 500 and near ideal CO2/N2 selectivity ≥ 10
 Ongoing work to further optimize USCT parameters to allow formation of defect-free selective layer with thickness ~100 nm.

poly(vhim)[Tf2N]
Lit. CO2 permeability: 67.3 barrer

Lit. CO2/N2 selectivity: 14.5

 Program Goal Achievement: Improved Materials/Processes

1000 barrer @ 1 µm

1000 barrer @ 250 nm

1000 barrer @ 100 nm
10,000 gpu

Development of RTIL-based selective 
layer materials with:

  - improved CO2 permeability (P > 1000 
barrer);

  - material properties amenable to robust, 
stable, continuous film formation and 
application in  flue gas environments; &

  - an ultra-thin (≤ 100nm) membrane 
fabrication technology

will lead to achievement of project targets.


