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Bracht et al., Energy Convers. Mgmt 38, S159-164 (1997) 

Hydrogen Selective Membranes in IGCC Plants 

 Challenges under WGS conditions of IGCC plants

•  high temperature and pressure

•  presence of impurities (H2S)
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 IGCC efficiency

•  without CO2 capture: 46.7%

•  with conventional CO2 removal: 40.5%


 With WGS-MR and CO2 recovery: 42.8% (LHV) based on 

•  35 atm feed, 20 atm permeate (15 atm pressure drop)

•  330oC in the feed

•  hydrogen/carbon dioxide selectivity = 15

•  hydrogen permeability = 0.2 mol/(m2.s.bar)



 

 
 
 Membrane Area Needed: 2,200 m2 (400MW)

Bracht et al., Energy Convers. Mgmt 38, S159-164 (1997) 

IGCC w/ WGS-MR 
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Motivation: Hierarchical Manufacturing of Zeolite Films 
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For a Review:  
Mark A. Snyder, Michael Tsapatsis,  
Angew. Chem. Int. Ed. 2007, 46, 7560–7573 

Science 300:(5618), 456-460 (2003) 

Angew. Chem. Int. Ed. 45, 1154-1158 (2006)  

Science 325 (5940), 590-594 (2009) 
Nature Materials, 7(12), 984-991(2008) 

Chemistry of Materials 10, 2497-2504 (1998)  
AIChE Journal, 42(11), 3020-3029 (1996)  
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Layer by Layer Deposition (JACS 132(2), 448-449 (2010)) 

5 layers of MCM-22/surfactant-templated-mesoporous-silica  
on porous alumina 

1µm 
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Comparison of Ideal Selectivity 

The ideal selec/vity (H2/CO2 and H2/N2) increased monotonically with  
temperature and improved with the number of deposi/on cycles. 
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*Open symbols :  selectivity through α-Al2O3 discs 

MCM-22/Silica Membranes for Hydrogen Separations 
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6 MCM-22 
layers 

Choi J. and Tsapatsis M. Journal of the American Chemical Society  
132(2), 448-449 (2010)  
Experimental Demonstration of Selective Flake Composite Concept 
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Increase selec*vity without 
decreasing throughput 

1000 nm 

H2  N2 

Increase throughput without 
decreasing selec*vity 

100 nm 

H2  N2 

Advantages by Reduction in Flake Thickness 
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Membrane Preparation Procedure 

MCM22-P Swollen 

Exfoliated Layers 
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Purified nanosheets in toluene were filtered through porous 
alumina supports and then secondary growth was conducted. 
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•  Exfoliated ITQ-1 on Alumina Disk
 •  After Secondary Growth of ITQ-1
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Performance of ITQ-1 Membrane 
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Varoon et al., Science 334:(6052), 72–75 (2011) 
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Steam Stability Studies 

Four layered zeolites (MCM-22, ITQ-1, NU-6(2), 
RUB-24) with 6-MR perpendicular to the layers 

were investigated.  
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Hydrothermal Stability Setup 
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Hydrothermal Stability of MCM-22 and ITQ-1 


  Temperatures: 350oC, 600oC



  Pressure: 10 bar (95% steam, 5% nitrogen)



  Samples were analyzed in 21-day intervals for 84 days


Both MCM-22 and ITQ-1 showed poor 
steam stability at 600oC. 


MCM-22 outperformed its all silica 
counterpart (ITQ-1) at 350oC. This 
behavior was related to the lower 
concentrations of structural defects 
in MCM-22.
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Hydrothermal Treatment Conditions for RUB-24 and NU-6(2) 


  Temperature: 350oC



  Pressure: 10 bar (35% steam in nitrogen)



  Duration: 6 months


Nu-6(2) was structurally stable 
after 6 months of steaming.


RUB-24 lost its crystallinity 
after 6 months of steaming.
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Summary of Stability Analysis & Future Work 

• Achievement


•  long-term steam stability of zeolites MCM-22, ITQ-1, NU-6(2), and 
RUB-24 were investigated


• NU-6(2) preserved its crystallinity after 6 months of steaming (35% 
H2O, 65% N2) at 350oC


• Future Work


•  study of membrane performances at high temperatures


• hydrothermal stability study of membranes
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Systems Modeling: Objectives and Approach 

• Develop a WGS membrane reactor (MR) model


•  Integrate MR model into IGCC system model


• Analyze effect of reactor design and membrane characteristics on integrated 
plant performance


•  achieve DOE R&D target goal of 90% CO2 capture (1),(2)


•  satisfy stream constraints for CO2 capture and gas turbine fuel (H2 rich) (3)


•  quantify process efficiency and power generation


•  Perform preliminary techno-economic analysis of integrated IGCC-MR 
process


•  Received input from DOE/NETL personnel (John Marano and Jared Ciferno)


(1) Marano, Report to DOE/NETL (2010) 
(2) Marano and Ciferno, Energy Procedia 1, 361-368 (2009) 
(3) Lima et al., Ind. Eng. Chem. Res. 51, 5480-5489 (2012) 
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MR Modeling Assumptions and Simulation Set Up  

•  Assumptions


•  1-dimensional shell and tube reactor


•  catalyst packed in tube side


•  thin membrane layer placed on surface of tube wall


•  sweep gas flows in shell side


•  plug-flow operation


•  constant temperature and pressure


•  steady-state operation


•  ideal gas law


Composition (1): 
CO = 30.63% 
H2O = 36.76% 
CO2 = 8.41% 
H2 = 23.57% 


   Flow configurations



   co-current


  counter-current



   Simulation conditions 



   catalyst type and reaction rate (2)



   reactor dimensions (lab) 



   consistent with IGCC specifications



   Model used to perform simulation and 
optimization studies (3)
(1) Jillson et al., J. Proc. Cont. 19, 1470-1485 (2009)  

(2) Choi and Stenger, J. Power Sources 124, 432-439 (2003) 
(3) Lima et al., Ind. Eng. Chem. Res. 51, 5480-5489 (2012) 
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IGCC Plant Modeling Assumptions 
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   Simplified systems-level model of entire process (ASU, gasifier, turbines, 
and heat exchangers) in MATLAB



   Assumptions: few basic components, lumped compartments in gasifier/
turbines, static heat exchanger models (1)



   Developed model validated using published simulation data (1)


(1) Jillson et al., J. Proc. Cont. 19, 1470-1485 (2009)  
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Integration of MR into IGCC Plant (MATLAB) 


   Scale up MR model at steady state



   Integration directly downstream of gasifier (1),(2)



   Effect on heat exchangers/turbines



   Perform preliminary technical assessment of IGCC-MR integrated plant
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(1) Marano and Ciferno, Energy Procedia 1, 361-368 (2009) 
(2) Bracht et al., Energy Convers. Mgmt 38, S159-164 (1997) 
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Integration of MR into IGCC Plant (MATLAB): Simulation Results 


   Performance variables (2)



   carbon capture



   process efficiency



   power generation
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(1) Jillson et al., J. Proc. Cont. 19, 1470-1485 (2009)  
(2) Haslbeck et al., Baseline Report to DOE/NETL (2010) 
(3) Field and Brasington, Ind. Eng. Chem. Res. 50, 11306-11312 (2011) 

 
C

CO2

=
carbon captured

carbon in feed
= 98.94%

 
η =

power generated

HHV energy in coal
= 40.83%

  W = 716.78 MW


   Process simulation conditions (1),(2),(3)



   Pt = 53.29 atm, Ps = 25.86 atm



   Tt = 380oC, Ts = 380oC 


   SH2/all 

 = 1000, QH2 = 0.2 mol/(s.m2.atm)



   Am  = 6800 m2
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IGCC-MR Simulation Results: Changing Membrane Characteristics 

IGCC Performance


Variable


Value


(SH2/all = 1000, 


QH2 = 0.2)


Value 


(SH2/all = 1000, 


QH2 = 0.1)


Value 


(SH2/all = 100, 


QH2 = 0.2)


98.94
 99.55
 89.79


40.83
 34.14*
 41.15


716.78
 599.31
 722.27

 
η =

power generated

HHV energy in coal
 %⎡⎣ ⎤⎦

 
C

CO2

=
carbon captured

carbon in feed
 %⎡⎣ ⎤⎦
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W = power generated MW⎡⎣ ⎤⎦

(*) PH2,P ≤ 44 %  
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Integration of MR into IGCC Flowsheet (Aspen) 


   MR integration into Aspen flowsheet (Ongoing)



   use available baseline IGCC model (MITEI) (1)



   MR model implemented (co-current) in Aspen Custom Modeler



   similar results to MATLAB model obtained



   Perform simulation & techno-economic analysis



   feasibility of replacing current technology (CO shift followed by physical 
absorption) for CO2 capture



   achieve DOE target goals (CO2 capture, COE)
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(1) Field and Brasington, Ind. Eng. Chem. Res. 50, 11306-11312 (2011)  
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Integration of MR into IGCC Flowsheet (Aspen) 


   MR integration into Aspen flowsheet (Ongoing)



   use available baseline IGCC model (MITEI) (1)



   MR model implemented (co-current) in Aspen Custom Modeler



   similar results to MATLAB model obtained



   Perform simulation & techno-economic analysis



   feasibility of replacing current technology (CO shift followed by physical 
absorption) for CO2 capture



   achieve DOE target goals (CO2 capture, COE)
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(1) Field and Brasington, Ind. Eng. Chem. Res. 50, 11306-11312 (2011)  
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Modeling Conclusions & Future Work 

•  Conclusions


•  MR model integrated into IGCC process model in MATLAB


•  preliminary technical assessment of IGCC-MR plant performed


•  MR model (co-current) implemented in Aspen


•  Future Work


•  develop relationships between membrane parameters and cost


•  carry out IGCC-MR design optimization (MATLAB)


•  develop counter-current MR model (Aspen)


•  adjust MR model to incorporate into Aspen IGCC baseline model (1) 
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(1) Field and Brasington, Ind. Eng. Chem. Res. 50, 11306-11312 (2011)  


