CO₂-Binding Organic Liquids, Enhanced CO₂ Capture Process With a Polarity-Swing-Assisted Regeneration

CO,

Battelle The Business of Innovation

David J. Heldebrant NETL CO₂ Capture Technology Meeting Pittsburgh, PA July 10, 2012

HEAT

Battelle Memorial Institute

A leader in technology development and laboratory management

- World's largest non-profit R&D organization
- \$4 billion total revenue
- 20,400 staff (including labs)
- 30+ scientific user facilities
- Battelle has managed PNNL since 1965 and retains ability to perform commercial business

Project Overview

- Project Team:
 - BPNWD; project lead, materials development, testing
 - Fluor Corporation; process engineering, technology assessment
 - Queens University; PSAR testing, EH&S
- Project Award:
 - DOE funding:1.99 million/ 30 months
 - Cost share (Fluor): 500k
 - Sub contract (Queens) 130k
 - Project start Oct 1, 2011
- Project Scope: To advance CO₂BOLs from TRL 3 to 5 through bench-scale testing

Project Schedule and Tasks

- **BP 1** (Oct 2011-Dec 2012)
 - 1. Project Management
 - 2. Initial techno-economic assessment
 - Full process description and analysis
 - Cost estimates
 - Measurement of missing data
 - Revise technology performance targets
 - 3. Bench-scale design and retrofits for PSAR
 - Solvent scale up of two candidate BOLs
 - Retrofit equipment for PSAR
- BP 2 (Jan 2013-Mar 2014)
 - 4. Bench-scale testing
 - Shakedown testing
 - Bench-scale testing on liquid PSAR and solid PSAR
 - 5. Full technology assessment

- CO₂BOLs are a class of switchable ionic liquids discovered in 2004 with Professor Phillip Jessop (Queens University)*
- First switchable ionic liquid technology for gas separations

⁵ Nature, (2005), 436, 1102; Ind. & Eng. Chem. Res. (2008); 47, 3, 539, Energy Environ. Sci., (2008), 1, 487

2nd Generation CO₂BOL: Alkanolguanidines ¹³C NMR (neat) $\stackrel{()}{\circ}$ CO_2 -H

- 200 170 140 110 PPM 80 60 40 20
- Viscosity at 40 °C: 1 Cp (0 % CO₂) \rightarrow 120 Cp (10 wt % CO_2)
- Moderate CO_2 uptake (10 wt % @ 40 °C, 1 ATM CO_2) •
- Non-volatile •
 - V.P. = 1.3 mm Hg @ 100 °C, B.P. = 262 °C, Decomposition > 200 °C
- Specific heat 1.9 Jg⁻¹K⁻¹ (30 °C)

Koech et al. Green Chem. in Preparation

Battelle The Business of Innovation

0

8

Δ

0.2

040C A ▲40C B

060CA

△60C B

080C C

480C D

CO₂ Loading Profiles

Anhydrous

- Measured by PTx method
- ~7 wt% CO₂ (40 °C, 0.1 ATM CO₂)
- Homogeneous liquid with 1:1:1 BOL, CO₂, H₂O
 - Enhanced CO₂ uptake with water (bicarbonate)
- Heat of solution with water -80-90 kJ/mol

Α

-OH

8

Polarity Swing Assisted Regeneration (**PSAR**)

- Unique to switchable ionic liquid-like systems
- Anti-solvent addition favors CO₂-lean form

Energy. & Env. Sci. 4, 2011, 1385-1390, Patent Pending

Anti-Solvent Changes Equilibrium Loading of CO₂

• Decreases the CO_2BOL 's ability to hold CO_2 at a given temperature

		CO2 Loading in BOL (wt%) at					
Molar Ratios of Antisolvent (Heptane) : DBU : Propanol	Mass of Antisolvent (% of total DBU- Propanol mass)	25°C	45°C	60°C	75°C	90°C	120°C
0:1:1	0%	13.7%	12.7%	9.9%	8.6%	1.8%	0.0%
0.5:1:1	24%	13.7%	12.5%	8.1%	2.3%	0.6%	0.0%
1:1:1	47%	13.7%	10.8%	5.0%	0.5%	0.5%	0.0%
2:1:1	94%	13.7%	10.6%	4.1%	0.4%	0.0%	0.0%

- Full CO₂ release at 75 °C VS. 100 °C without antisolvent
 - Less thermal degradation and evaporative losses of sorbent
 - Optimal mole fraction of anti-solvent ~ 0.4

Anti-Solvent Addition Enhances CO₂ Release Kinetics

CO₂ release rates, with and without anti-solvent, from DBU-propanol initially loaded to 13.7 wt%. Reference measurement included for 30% MEA loaded at 7 wt% CO₂.^a

Solvent (preloaded with CO ₂)		Regeneration Temperature (°C)	Maximum CO ₂ Release Rate [mmol/min]		
		60	0.6		
DBU-PrOH (1:1 on a mo antisolvent added at re		75	1.2		
	regeneration	90	2.0		
DBU-PrOH (1:1 on a mo	olar basis), 1:1 molar	60	0.9		
heptane (to DBU) antis		75	2.0		
regeneration		90	20		
MEA (30wt% solution)		120	1.0		

• Faster release rates are estimated to allow smaller equipment sizing, thus lower capitol costs

¹⁰ Heldebrant et al. unpublished data 2011, Patent Pending

11 Heldebrant et al. unpublished data 2011, Patent Pending

Battelle **Initial Technology Assessment** The Business of Innovation **FLUOR** CO2-PROD CLNGAS COND ABSORBR STRIP2 COND-SEP Water Knockout REC-WATR SOLV-L SOLV-L STRIP B 10 RFC FGIN STRIPPER BLOWDN SOLV-R1 н20-ко SOLV-R DCCOH PUMP SOLV-L2 £ KO-H2O

	Recreated NETL Case 10	CO ₂ BOLs	CO ₂ BOLs/PSAR
CO ₂ Recovery	90%	90%	90% (est)
Specific Steam Heat Rate, Btu/lb	1,575	970	?
Solvent Circulation Rate, lb/hr	1.02E+07	1.05E+07	?
Solvent:CO ₂ Rate (moles/mole)	3.1	3.4	?
Absorber Feed Gas Temperature, °F	47	40	?
Absorber Feed Gas CO ₂ Conc'n, %v/v	15.2%	15.3%	?
Reboiler Temperature, °C	120	140	?

- Results are **preliminary** on an equilibrium models, currently no kinetic input
- Water accumulation needs to be resolved
- CO₂BOL loss in absorber vent and blowdown needs to be addressed

PSAR Technical & Economic Advantages

- PSAR process enhances CO₂BOL release to as low as 75 °C
- Lower evaporative losses and thermal degradation
- Potential for reducing the pressure of the LP steam used for regeneration allowing more energy content to be used for producing power
- Heat integration engineering possibilities can have minimal impact to steam cycles
- Retrofit options or greenfield with heat integration designs

PSAR Technical & Economic Challenges

- Time and efficiency of anti-solvent separation/carryover
- Impact of water on CO₂BOL/PSAR chemistry
- Costs of PSAR VS. thermal regeneration
- Is an MEA configuration correct?
- CO₂BOL material costs

Future Work

- Kinetics of absorption and desorption
 - Wetted wall testing
- Configuration of PSAR process
 - Optimization of anti-solvent/CO₂BOL blend
- Bench-scale testing of CO₂BOLs with and without PSAR
- Formal process simulations of PSAR using ASPEN+
- Toxicity of CO₂BOLs and potential degradation products
- Scale up and slipstream testing

Battelle's Wetted-Wall and Bench-Scale Testing Carts

Acknowledgements

Funding:

US Department of Energy Office of Fossil Energy DE-FC-FE0007 466

NETL PM: Andrew Aurelio

Battelle Pacific Northwest Division: Phillip Koech, Igor Kutnyakov, Andy Zwoster, Charlie Freeman, Mark Bearden, Feng Zheng

- **The Fluor Corporation**
 - Arnie Smith
 - Paul Mathias
 - Kash Afshar
 - Sattish Reddy

Queens University: Philip Jessop (Queen's University)
Omid Ghaffari Nik (Queen's University)