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A premier aerospace and defense company

Company Backgrounds

• ATK is a leading aerospace & defense contractor
• ACENT is a small business dedicated to 
applying expertise in aerospace and defense to 
clean energy challenges

• Founded in 2007, ACENT is developing

• ATK is a leading aerospace & defense contractor
• ATK GASL in Ronkonkoma, NY operates the ATK   
Center for Energy and Aerospace Innovation

• Expertise and research interests include :
• Aerospace propulsion Founded in 2007, ACENT is developing 

technologies in CO2 capture, algal biomass, 
hydrogen vehicles, and enhanced oil recovery

• Aerospace propulsion
• Carbon capture
• Hydrogen fueled vehicles
• Clean coal technologies
• Oil recovery solutions• Oil recovery solutions

• ICES utilizes some methods developed under 
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Project Overview

Funding Summary:
ARPA e: $ 2 693 KARPA-e:  $ 2,693 K
ATK and ACENT Cost Share: $    632 K
NYSERDA (New York State) $    200 K ( ) $
TOTAL $ 3,525 K

Project Performance Dates:
Phase 1: July 2010 – March 2011 (completed)
Ph 2 J l 2011 J 2013 ( i )Phase 2: July 2011 – June 2013 (ongoing)

Project Participants:Project Participants:
Alliant Techsystems (ATK)
ACENT Laboratories LLC
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Overall Project Objectives

• Demonstrate proof-of-concept of aero-thermodynamic 
CO condensation and separationCO2 condensation and separation

• Develop and benchmark analysis tools with experimental 
d t t bldata to enable:

• Scaling of demo system to power plant size

• Projection of economics in terms of COE and parasitic loads

• Provide basis for next-phase slip-stream testing with real 
flue gas

• Minimize flue gas pressurization requirements

• Maximize CO2 capture (>90% goal)
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Maximize CO2 capture ( 90% goal)
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ICES Technology Fundamentals

• Pulverized coal power plant 
flue gas contains ~16% 
CO2 in gaseous form at low 
pressure

• In ICES we compress flue 
gas to a moderate level andgas to a moderate level and 
use the low temperature 
created by supersonic 
expansion to freeze theexpansion to freeze the 
CO2 in the flow

• ICES uses turning induced 
in the flow to inertially
separate the solid particles 
from the gas stream

• We capture and collect the CO2 (as dry ice) 
and then process using a self-pressurization 
system exploiting power plant waste heat
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system exploiting power plant waste heat 
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ICES on a P-T Diagram – Supersonic Expansion
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ICES Integration in PC Plant
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ICES System Schematic
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ICES Economic Impact

• ICES operating costs are driven by flue 
gas pre-compression
P f t P /P• Pressure recovery factor = P22/P19

• Low CapEx/OpEx combined with low 
power consumption result in a 

j t d t f l t i it i fprojected cost of electricity increase for 
CO2 capture just over 1/3 that of the 
amine process

• Compression to 2,250 psi from low 
grade waste heat (constant volume 
heat addition to solid).  Cost is limited 
t CAPEX + t dito CAPEX + energy to move media.

Metric ICES Amine
COE % increase 35% 81%
Parasitic Load 12.5% 21.5%
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Cost per ton of CO2 avoided US$ 27 US$ 68
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Energy Consumption

Process Minimum Energy 
[kJ/kg CO2]

ICES
[kJ/kg CO2]

Amine
[kJ/kg CO2]

S ti 175 683*Separation -175 -683* -
CO2 Compression -247 ~68** -
Total -422 -751 -1,506Total 422 751 1,506

* Pre-compression of flue gas to 2 bar (absolute)
** + Approximately 760 kJ/kg of low grade waste heat used to compress CO2
from solid phase to 2 250psiafrom solid phase to 2,250psia

Fixed volume at 
ambient 

~760 kJ/kg latent 
sensible heat

Supercritical 
CO2

pressure 
partially filled 

with solid CO2 at 
200 ºF

Initial Volume % 
filled with solid

Pressure at 
70ºF [psia]

2 

-200 ºF filled with solid 70 F [psia]

60% 3,000
65% 6,000
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Compression energy is nearly “economically free” but it is not 
“thermodynamically free”  i.e. this energy would otherwise be wasted
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ICES Plant Integration and Footprint

An ICES system sized for 545MW-equivalent flue gas contains twelve 60” ICES 
units (flue gas compression not shown)

L= 183 ftL= 183 ft
W= 60 ft
H = 70ft

ICES is projected to have a significantly smaller footprint and complexity 
compared to competing CO2 capture technologies and hence significantly
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compared to competing CO2 capture technologies and hence significantly 
lower capital and maintenance costs
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Key Advantages of ICES over other options

• No moving parts (after start)

N h i l / dditi th bl di• No chemicals/additives or other consumable media

• No refrigeration expense – low temperatures from supersonic 
expansionexpansion

• Inexpensive construction (concrete, sheet metal)

• Small footprint• Small footprint

• ICES units in test are equivalent to 0.3-0.6 MW slip stream

• The latest unit (0 3 MW) is 24” x 24” x 3”• The latest unit (0.3 MW) is 24  x 24  x 3

• Small size enables distributed deployment for other process 
applications in the petroleum and chemical industriespp p

• Availability of “cold sink” in solid CO2 accumulated
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ICES Development Challenges

• Development of optimized supersonic contour to 
maximize particle size/migration and minimize pressuremaximize particle size/migration and minimize pressure 
losses

• Minimization of “slip gas” that is removed with solid CO2

• CO2 purity unknowns - other flue gas impurities thatCO2 purity unknowns - other flue gas impurities that 
condense will be removed with the CO2

S lid CO t/ lf i ti• Solid CO2 management/self pressurization

• This really is rocket science….but once the design is y g
complete, it is easy and inexpensive to build and operate
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Project Status – Phase 1

• Phase 1 and early Phase 2 efforts focused 
on an axisymmetric system with swirl  

ICES test bench
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Axisymmetric System Results

Phase 1 data showed good CO2 condensation and apparent, but 
erratic migration due to unsteady and separated flowerratic migration due to unsteady and separated flow

Outer (glass) wall)

Centerbody
Solid CO2
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We recently changed to a 2D version of ICES

• Better aerodynamic 
performance (lowerperformance (lower 
losses)

• Easier to fabricate 
d t t

Aluminum plenum 
chamber and throat

Aluminum plate reinforces 
plenum chamber

and test
• No swirl vanes to 

induce 
Clear acrylic sidewallsturbulence/wake 

effects
• Simpler capture duct 

Clear acrylic sidewalls
Supersonic flowpath

components made on 
3D printer (ABS)

without swirl
Vacuum interface 
flange (steel)
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Gen5 Test Article Design – ATK Installation

24” Vacuum Pipe
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Test Data Comparison to CFD – Static Pressure
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Laser Particle Imaging Diagnostic

Test Article

High Speed HD Laser Sheet 
Image cameraImage
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Nd:YAG Laser
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1, 10, and 100 Micron Particle Trajectories

1 μm1 μm

10 μm

100 μm100 μm
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At 10 microns+ particles separate and coalesce allowing for 
a slender capture slot
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Three modes in typical ICES test

CO2 migration 
toward lower 
wall evident

1)  Air flow only

wall evident

2)  30 psi, 20% CO2 

Optical and CO2 sampling results show condensation as 
e pected b t less than desired migration e ident Particle si e

3)  30 psi, 10% CO2 
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expected, but less than desired migration evident.  Particle size 
does not appear large enough in these tests  
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Condensate Particle Size Control

• Classical nucleation theory provides basis for predicting critical condensate 
cluster size and subsequent growth rate:

• Both are strong function of the saturation ratio (S)  = partial pressure of 
vapor/saturation pressure (pv/ps)
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Current Plans

• Remaining portion of Phase 2

I ti t fl di ith lid CO ( lf t d) d th• Investigate flow seeding with solid CO2 (self generated) and other 
media to promote large particle formation (ongoing)

• Update contour to further optimize particle sizeUpdate contour to further optimize particle size 

• Integration of capture duct to remove CO2

• Integration of diffuser to return flow to atmospheric pressure with• Integration of diffuser to return flow to atmospheric pressure with 
minimal losses

• “Phase 3”

• Ideal next step desired is a slip stream test, e.g. at the National 
Carbon Capture Center (NCCC)
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Accomplishments to date

• Three ICES configurations have been developed and 
tested to datetested to date 

• Demonstrated clean nozzle flow with low apparent losses 
(to be verified with later diffuser tests)

• Demonstrated supersonic condensation with someDemonstrated supersonic condensation with some 
migration

Pl i l t i ti l i t hi d i d• Plans in place to increase particle size to achieve desired 
migration performance
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BACKUP
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Schematic of Condensation Process

S = ps / pv , where pv is the partial 
pressure of the vapor and ps is the 
vapor saturation pressure at the 
temperature of the system.
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