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Background 

• Thermal barrier coatings (TBCs) are required for high-temperature 

metallic components in advance turbine systems to be operated with 

higher efficiency and low emission 

• TBCs have become “prime reliant” material Ą their condition monitoring 

and lifetime prediction by NDE is important 
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NDE Applications for TBCs 
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• Two characteristics of TBC degradation/failure: 

– (1) Ceramic top coat continuously sinters with minimal damage 

– (2) Cracks and delaminations develop and expand near interface 

• NDE methods based on detection of cracking & its effect (2nd factor) 

– Photo-luminescence piezo-spectroscopy for stress accumulation 
• Detailed stress distribution for thin TBCs in lab tests (not suitable for field use) 

– Electrochemical impedance spectroscopy for cracking and phase 

transformation 
• Not exactly a NDE method (requires permanent attachment) 

– Laser-backscatter and mid-IR reflectance (MIRR) for crack detection 
• Optical methods have some success for thin coatings (mostly in lab tests) 

– Thermal imaging for crack/delam detection 
• Successful for large cracks and delaminations (for TBCs near end of life) 

• NDE methods based on property measurement (1st and 2nd factors) 

– Thermal imaging for TBC thermal property measurement 
• TBC conductivity evolves with TBC life (in predictable trend?) 



NDE for TBC Life Prediction 
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• Current NDE methods have limited capability for TBC life prediction 

– Spectroscopy methods are not suitable for real component field 

application 

– Optical methods have some success for thin coatings in lab tests 
• Investigated under this project; may have potential for field application 

– Traditional NDE methods for delamination detection are not quantitative 
• Many NDE methods are usable; thermal imaging is most effective 

• Advanced NDE methods are required for TBC characterization 

– Life prediction (based on quantitative TBC property measurement) 

– High-resolution detection of crack initiation and propagation 

– Applicable to new more complex TBC systems (eg, duel-layer)  



Objectives of This Project 

• Develop and evaluate advanced NDE methods for (1) TBC life 

prediction and (2) high-resolution detection of coating flaws 

– (1) For life prediction:  

• laser backscatter, mid-IR reflectance 

• thermal multilayer analysis 

– (2) For high-resolution flaw detection 

•  thermal tomography 

• Develop NDE methods for functional materials (gas-separation 

membrane, fuel cell, etc) 

– Synchrotron x-ray CT, thermal tomography 
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Recent NDE Developments under This Project 

• Continued evaluation of optical NDE methods (mid-IR reflectance 

and laser backscatter) for TBC life prediction 

– New samples from Siemens and Harvard Univ. 

• Continued development of two thermal imaging methods 

– Thermal multilayer analysis for TBC life prediction 

• Evaluate TBC life prediction model based on measured TBC thermal 

properties (thermal conductivity) 

• Continued calibration for TBC property measurement accuracy from 

collaboration with researchers in Japan and Italy 

• Investigate property measurement for duel-layer TBCs 

– Thermal tomography method (3D imaging) 

• Continued development of new algorithm for high-resolution imaging 

• Applied to a DARPA SBIR project with success 
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Presentation Focus: NDE for TBC Life Prediction 
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• Optical methods: Laser backscatter and Mid-IR reflectance (MIRR) 

– Method evaluation 

• Thermal imaging methods: multilayer analysis method 

– TBC life prediction model 

– Model evaluation 



Laser Backscatter for TBC Life Prediction 
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Mid-IR Reflectance for TBC Life Prediction 
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• Technology developed by Dr. Eldridge of 

NASA 

• Reflectance increases with TBC cracking 

• Mid-IR reflectance developed at ANL 

- Use entire 3-5µm wavelength (narrow band 

in NASA system) 

- Use weaker IR source (low thermal heating) 

- Test/data processing procedure established 

Schematics 
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Comparison/Discussion of Optical Methods 
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• Laser backscatter (visible 633nm wavelength) 

– Sensitive only to internal scatter (from TBC volume and interface) 

– Low penetration depth Ą lower sensitivity to interface signal 

• MIRR (infrared 3-5µm wavelengths) 

– Sensitive to all reflections/scatters (from TBC surface, internal, interface) 

– Deep penetration depth Ą more sensitive to interface condition 

 

• Advantages 

– Non-contact, remote, direct 2D imaging 

– Instantaneous (point-and-read), signal can be scaled (quantitative) 

• Disadvantages 

– Limited detection depth (typically up to 300µm coating thickness) 

– Signal intensity is a function of TBC thickness (in addition to flaws) 

– Susceptible to surface contaminations 



TBC Life Prediction Based on TBCôs Thermal Property 
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• To use thermal property for TBC life prediction, ANL developed a NDE 

method that can accurately measure TBC thermal properties  

• Multilayer analysis method measures two TBC properties: 

• Thermal conductivity distribution 

• Heat capacity distribution (or thickness distribution) 

• Applicable to all coating systems on engine components  
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Modeling TBC Conductivity Change with Life 
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• TBC thermal conductivity is affected by two factors: 

– (1) Conductivity increase due to coating material sintering 

• Measured by laser flash on stand-alone coating samples 

– (2) Conductivity decrease due to cracking/delamination at interface 

• A TBC conductivity-life model should account for both factors 

Ceramic coating 

Metallic substrate 

Heat conduction direction 

(effective TBC conductivity kexp) 

Cracks at interface 

(1) Sintering increases 

intrinsic conductivity k 

(2) Cracking reduces 

overall conductivity Dk 

Effective (measured) kexp = (intrinsic k) - (cracking reduction Dk)  



Intrinsic Coating Conductivity due to Sintering 

• Intrinsic coating conductivity change due to sintering (annealing) 

is commonly correlated with LMP (Larson-Miller parameter): 
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ln(k/k0) = a + b*LMP, 

LMP = T*(lnt + C), 

k = conductivity (W/m-K),  

k0 = initial conductivity (at t=0),  

T = temperature (K),  

t = time (s),  

a,b,C = fitting constants 

• Note: k0 and a can be combined, because: 

Tan et al. 2009 

ln(k/k0) = ln(k) - ln(k0) = ln(k) – constant 



TBC Conductivity - Life Prediction Model 
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• TBC life may be predicted from conductivity reduction due to cracking: 
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∆k = k – kexp,   (need to determine ∆k at 100% life)  
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Evaluation of NDE Methods for TBC Life Prediction 

• TBC samples from Dr. Kulkarni of Siemens 

 

• Optical methods: laser backscatter and mid-IR reflectance (MIRR) 

 

• Thermal imaging method  
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Siemens APS TBC Samples 
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Laser Backscatter Scan Images 
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Laser Backscatter Intensity vs. Time 
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• Backscatter intensity reduces with TBC life (?) 

• May require operation in IR wavelength to improve correlation  
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Mid-IR Reflectance Images 
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Mid-IR Reflectance Intensity vs. Time 
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• Mid-IR reflectance is correlated with TBC life (small range!) 

• Contamination is an issue 

• Failure (delamination) level is a function of TBC thickness  
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Thermal Conductivity Images 
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TBC Life Prediction Based on TBC Conductivity 

TBCs exposed at lower temperatures 

• TBC exposed at higher T2 for 10 days has some damage 

• This is for illustration only because few samples (4) were used 
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TBC Life Prediction Based on TBC Conductivity 
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Thermal Imaging Data for All TBCs 
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Comparison of NDEs for TBC Life Prediction 
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• DR decreases near failure Ą more difficult to detect  

– Failure R is a function of many parameters 

• Dk increases near failure Ą more sensitive (and easier to detect) 

– Failure Dk also relates to some factors, but large data sets exist! 

Thermal conductivity model 
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Summary 

• Three NDE imaging methods were evaluated for TBC life prediction 

– Laser backscatter (optical) 

• Not sensitivity to TBC life; may need IR laser to improve sensitivity 

– Mid-IR reflectance (optical) 

• Good correlation to TBC life, although sensitivity is within a small range 

• Contamination, thickness limit, and failure level are remaining issues 

– Thermal multilayer analysis method (thermal) 

• TBC life prediction model is based on conductivity reduction due to interface 

cracking 

• Preliminary data showed good potential for TBC life prediction  

• Effective conductivity for TBCs with depth-dependent conductivity variation 

needs to be defined and measured 

• Thermal TBC life prediction model could be more sensitive than 

optical because the “damage parameter” becomes larger in thermal 

(Dk) while smaller in optical (DR) when TBC is near failure  

• NDE methods for TBC life prediction are well developed; further 

evaluation for TBCs with various exposure conditions is needed 
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Planned Future Efforts 

• Continued evaluation of NDEs for TBC lifetime prediction  

• Development of thermal multilayer analysis method: 

– For complex coatings: dual-layer, conductivity depth gradient 

– Investigate prediction accuracy due to secondary effects 

• Development of thermal tomography method 

– Correlate NDE data with destructive examination results 

– Develop new high-resolution algorithm for data processing 
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