Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultrasupercritical Coal Power Plants

Chen Shen, Timothy Hanlon, Shakhrukh Ismonov, Adrian Loghin, Monica Soare, Ning Zhou
GE Global Research

Ju Li
Massachusetts Institute of Technology

Acknowledgement:
Samuel Thamboo, Ramkumar Oruganti, GE Global Research; Liang Jiang, CSU
Deepak Saha, Robin Schwant, GE Energy
Vito Cedro, Jeffrey Hawk, Patricia Rawls, Robert Romanosky, NETL

Acknowledgment: This presentation is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award No. DE-FE0005859.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employed, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacture, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.
High temperature rotor application

- High temperature steam
- High stress concentration at bucket connection
- DOE's goal: A-USC 1400F capability (5000 psi steam, 20+years)
- Candidate alloy: 282
Overall goal and tasks of the program

Creep-fatigue-environment interactions of Alloy 282

• Fatigue performance in steam and air environment
 • Hold-time fatigue experiment (Task 2)
 • Hold-time fatigue FEM modeling (Task 6)
 • Fundamental understanding at crack tip (Task 2,3)
• Creep performance
 • Creep modeling & prediction (Task 5)
 • Long-term microstructure stability & interaction with defects (Task 4)
Tasks of the program

Creep-fatigue-environment interactions of Alloy 282

• Fatigue performance in steam and air environment
 • **Hold-time fatigue experiment (Task 2)**
 • Establish relationship between crack growth and LCF for Alloy 282
 • Predict LCF behaviors in steam and air
 • Hold-time fatigue FEM modeling (Task 6)
 • Fundamental understanding at crack tip (Task 2,3)

• Creep performance
 • Creep modeling & prediction (Task 5)
 • Long-term microstructure stability & interaction with defects (Task 4)
Alloy 282 hold-time fatigue mechanism understanding (Task 2)

Time Dependent Fatigue Crack Propagation

Hold time fatigue can generally be categorized into cycle dependent behavior, time dependent behavior, and in some cases, a combination of the two.
If we have crack growth data like this:

Then we expect LCF data to be:

Hold-time effect can manifest itself in LCF as well.

- Coarse grain Ni-base superalloy @ 1000°F
- 1s load/unload period + hold time
- 0.75% strain range
Need to establish:
• Initiation criteria and short crack growth behavior
• Upper bound of time independent and time dependent curves

Goal: Calculate smooth bar LCF life by integrating time-independent and time-dependent crack growth curves
Hold-Time-Sweep Testing

Alloy 282 Air

- **ΔK = 25ksi*in^{1/2}**
 - Load Ratio: 0.1
 - 1600°F
 - 1400°F
 - 1200°F

Alloy 282 Steam

- **ΔK = 25ksi*in^{1/2}**
 - Load Ratio: 0.1
 - 1400°F
 - 1200°F

- **Effect of steam** apparent at 1200°F, for cyclic periods greater than 100 seconds
- **Effect of steam** apparent at 1400°F, for cyclic periods greater than 3 seconds
- **1600°F air behavior** shows fully time dependent crack growth beyond 1000sec cyclic period

1600°F/Air selected to evaluate the relationship between crack growth and LCF
Preliminary Results: Building LCF/FCGR Correlation

1600F/Air

Hold-time effect manifested in Alloy 282 FCGR and LCF behavior
Tasks of the program

Creep-fatigue-environment interactions of Alloy 282

- Fatigue performance in steam and air environment
 - Hold-time fatigue experiment (Task 2)
- Hold-time fatigue FEM modeling (Task 6)
 - Calibrate 282 bulk material response for ANSYS
 - Predict crack propagation with/without hold-time, different strain ratios
 - Fundamental understanding at crack tip (Task 2,3)
- Creep performance
 - Creep modeling & prediction (Task 5)
 - Long-term microstructure stability & interaction with defects (Task 4)
Hold-time fatigue FE modeling (Task 6)

Constitutive material modeling

Finite Element simulations

Crack tip plasticity history

Identify material's cyclic, SPLCF elastic-plastic response

Perform ONE Fatigue Crack Growth Test (CT geometry)

Goal: Predict crack growth rate for different R-ratio conditions, with and without hold time
Fatigue and crack propagation FE modeling (Task 6)

Calibrate Chaboche rate-dependent material model in ANSYS
- SPLCF: 4 RB specimens
- 20CPM ramps w/ 6hr holds at max strain
- Strain ranges: [0, 0.0125], [0, 0.01], [0, 0.008], and [0, 0.007]
- Strain ratio: \(R = 0 \)
- 1400F

Calibrate Chaboche rate-independent material model in ANSYS
- LCF: 15 RB specimens
- Strain ranges*: [0.011], [0.0085], [0.0065], [0.005], [0.004]
- Strain ratio: \(R = 0 \)
- 1400F

*Strain ranges: \([0, \varepsilon_0, \varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4] \) for LCF

Confined crack-tip plasticity model to predict crack growth rate
- FCP: 11 CT specimens
- 20Hz, Environment: Lab air
- K increase and K shed tests
- Load ratio: \(R = 0.05, 0.25, 0.5, 0.9 \)
- 1200F, 1300F, 1400F
- Crack measurement technique: DC Potential drop (ASTM E647-08)

Calibrate model and predict crack growth
Tasks of the program

Creep-fatigue-environment interactions of Alloy 282

• Fatigue performance in steam and air environment
 • Hold-time fatigue experiment (Task 2)
 • Hold-time fatigue FEM modeling (Task 6)

• Fundamental understanding at crack tip (Task 2,3)
 • FIB/TEM: oxidation characteristics in air & steam
 • Ab initio/atomistic:
 • Oxidation-crack tip interaction, controlling mechanisms to hold-time effect
 • Oxygen diffusivities, energetics & kinetics (input to Tasks 4,6)

• Creep performance
 • Creep modeling & prediction (Task 5)
 • Long-term microstructure stability & interaction with defects (Task 4)
Crack-tip characterization (Task 2), ab initio/atomic modeling (Task 3)

FIB/Lift-out at crack front from 1400F steam specimen
- α-Al2O3 filled surface cracks
- Very thin Co-rich oxide at surface
- Bulk of Cr2O3 with lesser Ti

Ab initio/atomic modeling is pursuing:
- Crack tip oxide formation
- Oxygen diffusion in Cr2O3 and paths along GBs & interfaces

Provide microscopic mechanisms and parameters to high-level models
Tasks of the program

Creep-fatigue-environment interactions of Alloy 282

• Fatigue performance in steam and air environment
 • Hold-time fatigue experiment (Task 2)
 • Hold-time fatigue FEM modeling (Task 6)
 • Fundamental understanding at crack tip (Task 2,3)

• Creep performance
 • Creep modeling & prediction (Task 5)
 • Microstructure-based constitutive model
 • Creep curve simulation and present shortcoming
 • Long-term microstructure stability & interaction with defects (Task 4)
Alloy 282 creep mechanism understanding (Task 5)

- Low stress: dislocation looping & climb,
- Higher stress: γ' shearing
- Microtwinning at very low stress, low temperature

Dislocation climb-bypass is the main observation at low stresses
Creep experiment

- Historical test data 1375~1450°F, 15,000-40,000 psi
- New testing aimed at low stresses ≤ 15,000 psi
Modeling creep curves

- Current model (Oruganti, 2011) fits rupture times of Alloy 282 at different temperatures
- Does not fit well at low stress regime

→ current focus
Constitutive creep models

Empirical power law
\[\dot{\varepsilon} \sim A\sigma^n \exp \left(-\frac{Q}{RT} \right) \]

Microstructure based constitutive model of Dyson (climb-bypass)
\[\dot{\varepsilon} \sim A' \exp \left(-\frac{Q}{RT} \right) \sinh \left(-\frac{\sigma\Omega}{RT} \right) \]

Back stress: \(\sigma \rightarrow \sigma - \sigma_B \)
Activation volume: \(\Omega \sim \lambda_p b^2 \)
Prefactor: \(A' \sim \rho b (b/r_p) \phi_p \lambda_p / \bar{M} \)

<table>
<thead>
<tr>
<th>Cond</th>
<th>Stress (Ksi)</th>
<th>Temper (F)</th>
<th>Min. strain rate (10^{-7}/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>17.5</td>
<td>1375</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1375</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1400</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>17.5</td>
<td>1400</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1400</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1425</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>17.5</td>
<td>1425</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1425</td>
<td>2.70</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1450</td>
<td>1.36</td>
</tr>
</tbody>
</table>

\(Q \sim 515\text{KJ/mol} \)

Model creep strain curve with microstructure evolution

![Model creep strain curve with microstructure evolution](image)
Microstructure dependence

Solution Annealed

PA = SA + 8h @ 1450°F

Cond.	γ' (nm)
SA | 5-15
PA | 20-50
OA | 40-70

OA = PA + 250h @ 1425°F

Creep strain vs. time curves

PA SA

1400F, 37.5ksi

PA OA

1425F, 27.5ksi

→ more plots

Courtesy Jeff Hawk
Tasks of the program

Creep-fatigue-environment interactions of Alloy 282

• Fatigue performance in steam and air environment
 • Hold-time fatigue experiment (Task 2)
 • Hold-time fatigue FEM modeling (Task 6)
 • Fundamental understanding at crack tip (Task 2,3)
• Creep performance
 • Creep modeling & prediction (Task 5)
 • Long-term microstructure stability & interaction with defects (Task 4)
 • Precipitate size (coarsening)
 • Precipitate spatial distribution & inter-particle spacing
 • Precipitate-dislocation interactions
Microstructure modeling (Task 4)

- Precipitate (γ') strengthening
- Size and inter-spacing distributions
- Long-term (>20yr) γ' stability

Can predict long-term precipitate size (coarsening)

Precipitation (Langer-Schwartz) model
- γ' nucleation, growth, coarsening
- Calibrated to short-term data

(1840F solution + 5C/min cooling + isothermal aging)
Microstructure modeling (Task 4)

- **Phase field model**, nucleation, growth and coarsening
- Actual heat treatment (cooling, aging)
- Length scale: \(2\mu m\) box
- GPU accelerated, 50:1 time ratio at 1400F

Can predict long-term precipitate spatial distribution
Microstructure modeling (Task 4)

- Use same parameters of precipitation model
- No additional calibration

Validate statistical distributions
Microstructure-dislocation interactions (Task 4)

- **Creep model:** Back stress, microstructure dependence

- **Mean γ’ size, Inter-particle spacing**
- **Dislocation climb-bypass (one particle)**
- **Many-particle, spatial distribution**

Develop means to incorporate microstructure (evolution) into constitutive creep model
Backup slides
Phase 1: Hold Time Sweep
- Establish fully time dependent crack growth rates at four temperatures, three stress levels
- Establish critical cyclic period (for transition to fully time dependent behavior) at four temperatures, three stress levels

Phase 2: FCP and HTFCP
- Establish hold time crack propagation threshold at four temperatures
- Establish continuous cycling FCP data at four temperatures

Phase 3: LCF
- Establish fully time independent (20cpm) LCF lives at four temperatures
- Establish fully time dependent LCF lives at three temperatures, three hold times
- Construct N_f vs. hold time curves at three temperatures, one strain level

Goal: Calculate smooth bar LCF life by integrating time-independent and time-dependent crack growth curves
<table>
<thead>
<tr>
<th>Temperature</th>
<th>40ksi</th>
<th>37.5</th>
<th>35</th>
<th>27.5</th>
<th>20</th>
<th>17.5</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1375F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1425F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1450F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Advanced Ultra-Supercritical Steam Turbine

2 Percentage Point Efficiency Gain = 5% CO₂ Reduction

CO₂ Reduction (%)

Net Plant Efficiency (%) (Bituminous Coal, Without CO₂ Capture)

20% reduction in CO₂ corresponds with similar reductions (per MWh) in consumables including coal and limestone (reducing front-end equipment size), flue gas volume (reducing back-end and emission control equipment size), and overall emissions, water use, and waste generation

R. Romanosky, 2010
A-USC Rotor Materials

Projected Alloy 282

Operating Temperatures for SC and USC Technologies