

Role of Coal Ash in the Corrosion Performance of Structural Alloys in Simulated Oxy-Fuel Environments

K. Natesan and Z. Zeng
Argonne National Laboratory

26th Annual Conference on Fossil Energy Materials, Pittsburgh, PA, April 17-19, 2012

Work supported by DOE/Office of Fossil Energy, Advanced Research Materials Program

What and Why Oxy-Fuel Combustion

- Global climate change One of the causes identified is CO_2 increase in atmosphere one of the source for CO_2 is exhaust from fossil fuel combustion plants
- Energy production (in particular, electricity) is expected to increase due to population increase and per capita increase in energy consumption
- To meet the energy needs, fossil fuels (coal, gas, oil, etc.) will play a major part in production even with a projected increase from alternate sources
- To minimize CO₂ emission current systems emphasize capture from power plants and sequestration
- Oxy-fuel combustion systems enable retrofit of PC boilers, recycle CO_2 in the combustion process, use novel gas turbines, and emphasize reuse

Oxy-Fuel Combustion System

Historical Development of Oxy-Fuel Systems

List of Large Demonstration Oxy-Combustion Plants

No	Demo/pilot- plant name	Scale (Demo/Pilot plant)	MW e	New Retrofit	Startup/ Duration	Main Fuel	Electricity generation Yes/No	CO2 Compression (Yes/No)	CO2 use/Seq	CO2 purity	Gas clean up
1	Vattenfall pilot plant, Germany	P	10	N	2008	Coal	N	Y	Y	99.90%	FGD ESP
2	Callide (CS Energy, Australia)	D	30	R	2011	Coal	Y	Y	Y		FF
3	TOTAL, Lecq, France	D	10	R	2009	NG	N	Y	Y	99.90%	
4	CIUDEN, Spain	P (PC/CFB)	17	N	2010	Coal	N	Y	Y		SCR FF FGD
5	Youngdong, South Korea	D	100	R	2016	Coal	Y		Y	98%	SNCR FF
6	Jamestown/Praxa ir Plant, USA	D(CFB)	50	N	2013	Coal	N	Y			
7	Jupiter Pearl plant, USA	D	22	R	2009	Coal	N	N			
8	Babcock&Wilcox pilot plant, B&W, USA	Р	10	R	2008	Coal	N		N	70% dry	FGD ESP
9	Doosan Babcock, UK	P	30	N/A	2008	Coal	N		N		

SO₂ concentration in air-fired and oxy-fuel combustion

Stranger and Wall, 2011

Effect of SO₃ and Water Vapor on Acid Dewpoint

Calculated sulphuric acid dewpoint

ANL Program Objectives

- Evaluate the effect of coal ash with additions of alkali, sulfur, and chlorine compounds on the corrosion performance
- Perform long-term experiments to enable corrosion rate and life prediction for structural alloys in simulated oxy-fuel environments
- Establish the kinetics of scaling and internal penetration, if any, and develop correlations for long term performance of metallic materials
- Identify viable alloys for structural and gas turbine applications
- Over the long term, evaluate the influence of exposure environment on the mechanical properties (especially creep, fatigue, and creep-fatigue) of the candidate alloys

Outline

- Background
- Objectives
- Materials and experimental procedure
- Alloys for evaluation
- Role of ash environment on corrosion
- Corrosion performance of alloys
- Project Summary

Current List of Alloys in the Study

Material	C	Cr	Ni	Mn	Si	Mo	Fe	Other
153MA	0.05	18.4	9.5	0.6	1.4	0.2	Bal	N 0.05, Nb 0.07, V 0.2
800H	0.08	20.1	31.7	1.0	0.2	0.3	Bal	Al 0.4, Ti 0.3
330	0.05	10.0	35.0	1.5	1.25	-	Bal	-
333	0.05	25.0	45.0	-	1.0	3.0	18.0	Co 3.0, W 3.0
617	0.08	21.6	53.6	0.1	0.1	9.5	0.9	Co 12.5, Al 1.2, Ti 0.3
625	0.05	21.5	Bal	0.3	0.3	9.0	2.5	Nb 3.7, Al 0.2, Ti 0.2
602CA	0.19	25.1	62.6	0.1	0.1	-	9.3	Al 2.3, Ti 0.13, Zr 0.19, Y 0.09
230	0.11	21.7	60.4	0.5	0.4	1.4	1.2	W 14, Al 0.3, La 0.015
693	0.02	28.8	Bal	0.2	0.04	0.13	5.8	Al 3.3, Nb 0.67, Ti 0.4, Zr 0.03
740	0.07	25.0	Bal	0.3	0.5	0.5	1.0	Co 20.0, Ti 2.0, Al 0.8, Nb+Ta 2.0
718	-	19.0	52.0	-	-	3.0	19.0	Nb 5.0, Al 0.5, Ti 0.9, B 0.002
MA956	-	20.0	-	-	-	-	Bal	Al 4.5, Ti 0.5, Y2O3 0.6
WASP	0.07	20.0	Bal	0.1	0.1	5	-	Al 1.4, Ti 3, Co 13.5
ANL-5	0.2	25.0	Bal	-	-	-	-	Al 3.3, Ti 0.3, Zr 0.2, Y 0.1

ASME Code Allowable Stress Values

ASME Code Allowable Stress Values at 650-800°C

Laboratory Test Details

Key variables: Temperature, time, alloy composition

Materials: Fe- and Ni-base alloys, coatings

Environments: 95%CO₂-0.99%SO₂-3.97%O₂

68.1%CO₂-26.9%H₂O-0.99%SO₂-3.97%O₂

Ash mixture: 90% (SiO₂:Al₂O₃:Fe₂O₃ = 1:1:1) and 10%(Na₂SO₄:K₂SO₄ = 1:1)

 $36\%SiO_2-16\%Al_2O_3-9\%Fe_2O_3-29\%CaO$ and $10\%(Na_2SO_4:K_2SO_4=1:1)$

Test temperature range: 650-1000°C

Test times: up to 5,000 h

Specimen evaluation: weight change

scanning electron microscopy

energy dispersive X-ray analysis

X-ray diffraction

synchrotron nanobeam analysis

Thermodynamic Stability of Oxide Phases in the Scale

Alloy Penetration Rates in CO₂ - H₂O - O₂ at 750°C (no ash)

No steam: CO₂ - 3.97% O₂

With steam: $CO_2 - 27.4\% H_2O - 3.97\% O_2$

High Cr, Al beneficial; Nb detrimental

Ni-base alloys performed better than Fe-base alloys

Ni-base alloy exhibit less localized corrosion

ANL-EMC 15.0kV 13.1mm x10.0k SE(L

Photograph of Specimens Exposed to Ash (US Eastern Coal)

1200 h at 750°C in ash and Gas with steam

Uniform corroded: 153MA, 253A, 617 Localized corroded: 800H, MA956, RA333,

625, 602CA, 230, 718, WASP, ANL5

No corroded: 693, 740, ANL4

1200 h at 750°C in ash and Gas without steam

Uniform corroded: 153MA,

Localized corroded: 800H, MA956, RA333,

617, 625, 602CA, 230, 718, WASP, 740

No corroded: 253MA, 693, ANL4, ANL5

Weight Loss Data at 750°C to Oxy-fuel Environment containing Eastern Coal Ash and Steam

Incubation time

Corrosion depth rate (subsequent to incubation) upon exposure at 750°C in oxy-fuel environment containing Eastern coal ash

Comparison of Corrosion Depth Data for Alloy 740

Alloy 602CA before incubation time in the gas with steam

Alloy 602CA after incubation time

Alloy 740, Exposure time >4,000h

Alloy 740, EDX at corroded region $\overline{\mathbf{M}}$

EDX of the interior region of corroded Alloy 740

Alloy 740, EDX at scale/alloy interface region

Alloy 693, 750°C, ash and steam, >4000h

Corroded region

Non-corroded region

Without CaO in ash, 600h

With CaO, without pre-sintering (without steam) 300h at 750°C

CaO sintered with $SiO_2 + Al_2O_3 + Fe_2O_3$ at 1100°C (without steam)

With steam and Ca-containing ash, 300h at 750°C

XRD of Ca-containing Ash After Sintering at 1100°C

XRD of Ca-containing Ash After 300-h exposure in corrosion test

Thermodynamic Stability of Ca compounds in Oxy-Fuel Environment

Project Summary

- We have conducted a study to evaluate the oxidation performance of structural alloys in simulated coal ash environments at 750°C.
 We believe the corrosion rates in these environments (in the absence of sulfur) are acceptable for service. However, the effect on mechanical properties is not established
- Results indicate that the oxide scales that develop on the alloys are not that protective and internal carburization of the substrate may occur
- The presence of Eastern coal ash (with alkali sulfates) coupled with steam in the gas environment accelerates corrosion of all structural alloys
- We have examined the role of steam and the effect of pO₂ on the corrosion scaling and internal penetration
- Ash/alkali sulfate effect initiates as localized corrosion in most of the alloys

Summary continued

- The corrosion process generally follows parabolic kinetics in most of the alloys, when tested in gas phase environments (with or without steam) in the absence of ash
- In the presence of ash, the alloys exhibit an incubation period during which the corrosion rates are low. Upon exceeding the incubation period, the corrosion accelerates and the process follows a linear kinetics. This is based on the microstructural examination of the tested specimens for internal oxidation/sulfidation/penetration of the substrate alloys
- In typical oxy-fuel combustion environments used in this study, most of the alloys exhibit corrosion rates ≥ 2 mm/year, based on linear kinetics
- Preliminary experiments in Ca-containing ash (typical of US Western coals) indicate potential for sulfur capture and possibly reduced corrosion of structural alloys

Future Plans for the ANL research project

- Complete corrosion evaluation of structural alloys in oxy-fuel environments containing different ashes, alkali sulfates, and alkali chlorides. This includes a range of coal ash chemistry and gas environments at temperatures up to 750°C.
- Experimentation to mitigate corrosion of structural alloys in both advanced steam-cycle and oxy-fuel combustion systems
 - Conventional coatings
 - Ash additives
 - Alloy surface modification using nano-structures

