Computational and Experimental Development of Novel High Temperature Alloys from Theory to Practice

M.J. Kramer, K.R. Severs, P.K. Ray, K.A. DeRocher and M. Akinc 26th Annual Fossil Energy Conference

The Problem

Advanced Turbine Systems

The Problem

- Increasing efficiency require higher operating temperatures, goal ~1300°C is very aggressive
 - Loss in creep strength
 - Dramatic Increase in oxidation rates
- Coal combustion environment
 - Highly Variable
 - H₂O, HS, NO_x etc.
 - Particulate erosion
- Cost of materials
 - Balance of down-time vs lifetime
 - i.e., are Ni-based alloys worth the cost?
- Are there better materials systems?
- Are there more effective ways of tweaking existing systems

Options

- Large region of the potential phase space unexplored
 - Edisonian approach is not an option
 - Computational Thermodynamics
 - Extrapolation of known thermodynamic data
 - Can easily handle multidimensional phase space
 - Large lead time for database development
 - Ab initio
 - Precise formation enthalpies
 - At 0 K higher T's require more effort
 - No entropic information
 - Density of States
 - What phases could form
 - Need to know what compounds are of interest!
 - Approximate methods
 - Miedema

Conceptual Approach

- Rapid Screening of potential systems
- High melting temperature
- Matrix should be a refractory metal with BCC or FCC
- Contain a 'reservoir' for passivating components
 - Al, Cr, Si

Number of elements	Possible combinations
2	3160
3	82160
4	1.58 x 10 ⁶
5	2.40×10^7
6	3.00 x 10 ⁸
7	3.18 x 10 ⁹
8	2.90 x 10 ¹⁰
9	2.32 x 10 ¹¹
10	1.65 x 10 ¹²

Ray, P.K., M. Akinc, and M.J. Kramer, *J of Alloys and Comp,* 2010. **489(2):** p. 357-361.

The need for rapid and effective hierarchical screening!!

Materials Metrics Considerations

Key requirements

- High melting temperatures
- Adequate strength and toughness
- Good oxidation resistance

Alloy Design

Requisites

- High temperature oxidation resistance
- High thermal stability

High melting + poor oxidation

Low melting + good oxidation

Mix of oxidation and melting

http://www1.asminternational.org/asmenterprise/apd/

ΑI

Tasks

- Base Alloy synthesis
 - Sintered
 - Cast
 - Directional Solidification
- Mechanical Testing
 - Fracture toughness
 - Jamie Kruzic, OSU
- Base Alloy oxidation characterization
 - Role of Mo content and morphology
 - Model for estimating catastrophic failure
- Development of coating alloys
 - Optimization of processing
 - Improved Ni-Al stability
 - Replacements for Platinum Group metals

Fracture toughness

- Drop-cast 15 atom% Mo alloy
- Fracture toughness ~ 9.4 MPa.m^{1/2}
- Fracture toughness of NiAl ~ 5 MPa.m^{1/2}
- Fracture toughness of Mo-Si-B alloys ~ 12
 MPa m^{1/2}
- DS eutectic Mo-Ni-Al alloy has shown
 ~10⁷ decrease in creep rate

Mo dendrites pull out, indicating its effect on the toughening mechanism in this alloy.

The challenge: Optimize the microstructure of the base alloy in order to optimize the strength and toughness of the alloy.

Effect of Temperature on Oxidation

Base alloy shows dramatic loss of oxidation resistance above 1100°C.

Early stages of oxidation (30 min)

- X250 100мm
- Size of NiMoO₄
 increases with
 temperature.
- This is accelerated from 1100°C onwards.

1125°C

	1000°C	1075°C	1100°C	1125°C	1200°C	
Al_2O_3	Yes	Yes	Yes	Low	Low	(
NiMoO ₄	Yes	Yes	Yes	Yes	Yes	
NiAl ₂ O ₄	Yes	Yes	Yes	Yes	Yes	
NiO	No	No	No	No	Yes	

- NiMoO₄ and NiAl₂O₄ are present at all temperatures from 1000°C to 1200°C
- NiO is absent until 1200°C
- Al₂O₃ is present throughout the entire temperature range, but in small amounts above 1125°C

Higher temperatures show low amounts of alumina on the surface, but NiO can be observed. This is contrary to the oxidation of pure Ni-Al alloys.

SE image of NiO in the alloy oxidized at 1200°C

Long term oxidation (10 hours)

EDS indicates the presence of large regions of NiMoO₄ in the top micrographsbut not in the bottom micrographs.

The bottom images show copious quantities of NiO which are present in the others in small amounts

Summarizing Ni-Al-Mo Oxidation

	1000°C	1075°C	1100°C	1125°C	1200°C
Alumina	Stays over time	Decreases over time	Significant decrease	Almost absent	Absent @ end
NiMoO ₄	Grows over time	Grows over time	Grows over time	Absent @ end	Absent @ end
NiAl ₂ O ₄	Present throughout	Present throughout	Present throughout	Present throughout	Present throughout
NiO	Absent throughout	Present @ the end	Present @ the end	Present @ the end	Present* throughout

^{*} Amount of NiO after 10 hrs at 1200°C seems less (visually) than the amount present after oxidation for 10 hrs at 1125°C

Multilayered scale formation: Summary

- Spallation will affect the outer part of the scale rather than the inner part
- Presence of NiAl₂O₄ in both regions indicate it to be an interim phase. Furthermore, it is known that NiAl₂O₄ is formed by sintering of NiO (outermost layer) and Al₂O₃ (adjacent layer)
- Subscale and the layer adjacent to subscale (and NiAl₂O₄) seen to be α-Al₂O₃ from XRD and SEM images

Phase transformation in NiMoO₄

Heating
$$\alpha \longrightarrow \beta$$
 @ 602 °C Cooling $\beta \longrightarrow \alpha$ @ 250 °C

Volume change associated with transformation on cooling ~ 20%

Massive volume change is responsible for spallation – hence its only the layers containing NiMoO₄ that will spall off

Improving the Oxidation of the Base Alloy

- Complicated, multi-phase oxdiation of (Mo)+NiAl alloys limits this alloys use in high temperature environments
- To control the oxidation process a coating can be implemented to limit the exposure of the base alloy to the oxidizing environment
- Inherent oxidation resistance of the base alloy is good enough to provide protection from catastrophic failure

By using β-NiAl as a coating, on top of the MoNiAl alloy, chemical gradients are decreased, which can prolong the life of the coating

Pack Cementation Process

By utilizing a constant current plating method using a 90+% efficient plating solution, control of Ni deposition is straightforward

Ni Plating Solution				
Nickel Sulfate	$175 \mathrm{g/L}$			
Nickel Chloride	$85~\mathrm{g/L}$			
Boric Acid	20 g/L			

Pack Composition, wt.%				
Aluminum	15%			
Ammonium Chloride	4%			
Alumina	81%			

Coating Formation

Area	$\mathrm{Al}(\mathrm{at.\%})$	Ni(at.%)
1	60.8	38.9
2	5.2	94.8

Area	Al(at.%)	Ni(at.%)
1	46.7	53.3

Anneal at 1350°C is required to homogenize the coating

Processing Flexibility

20% Mo 75% Mo

- The coating can be synthesized, independent of the bulk alloy composition
- Oxidation performance of the coating needs to be evaluated

Oxidation Stability

20kU X350 50μm 11 30 BEC

100 hours at 1200°C

20 hours at 1200°C uncoated

The coated 20-Mo samples show a dramatic improvement in the oxidation resistance.

Coated sample showed weight change of -1.8mg/cm²

Need for Higher T Range

- Addition of PGM elements helps in avoiding spallation.
- Hf addition further reduces the growth rate of the oxide scale.

Thermal Stability

$$T_m = 0.032 \frac{E^c}{k_B}$$

From Debye's theory of solids, derived by Smith, Rose and Ferrante, *Appl. Phys. Lett (1984)*

$$E^{c} = x_{1}E_{1}^{c} + x_{2}E_{2}^{c} + x_{3}E_{3}^{c} - \Delta H_{f}$$

Metal	Cohesive E (kJ/mol)
Al	327
Ni	428
Rh	554
Ir	670
Pd	376

Effect of Processing and Alloy Additions

Melt-spun (126 µm)*

1 mm (a)	1 mm (b)
1 mm (c)	1 mm (d)

Alloy	NiAl	9% Ir	9% Ir + Hf
K (μm²/hr)	10,528	6,198	327

Grain size of (a) NiAl, (b) 3% Ir, (c) 3% Rh and (d) 3% Pd in as-cast conditions.

^{*} After annealing for 6 hours at 1350°C

Grain Size Control

Putting it Together

- Grains produced by coating are columnar
- Exposed grain size is approximately 20µm

SEM of NiAl coating

OIM of NiAl coating

Coherent but not epitaxial interface between the base alloy and coating.

Alternatives to PGM

- Rather than use expensive elements to control the grain size of NiAl
 - Thermodynamic assessment of elements with low heats of mixing with Ni and Al were evaluated
 - TiB₂ was chosen
- Long term annealing at 1300°C shows little change in the morphology of the NiAl and TiB₂ particles
 - Concern about effect on oxidation

Research Plans (FY2012 - FY2013)

- Hyper-eutectic structure of the (Mo)-NiAl alloy shows promise for optimization of mechanical properties through directional solidification
- Work to determine the optimal parameters for increasing fracture toughness and strength
 - Composition
 - Solidification rate
- Grain size of NiAl was determined to be an important parameter for oxidation performance
 - Determine methods of refining grain size and controlling grain growth to maintain optimal grain size

System selection

3	4	5	6	7	8	9	10	11
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu
1539	1670	1902	1857	1244	1540	1495	1453	1083
Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag
1526	1852	2467	2617	2200	2250	1963	1552	961
La	Hf	Ta	W	Re	Os	Ir	Pt	Au
920	2227	3014	3407	3180	3027	2443	1772	1065

Empirical Method used to down select possible ternary alloy with promising formation enthalpies in the M-Al-X

Formation enthalpy for Al-X should < M-Al, potentially forming M-skeleton and a flesh of M-Al as a reservoir for forming a passivating scale.

Potential "backbone" metals
can not be scarce!
Mo, Nb, W

Directional solidification

→ top

Directional solidification

Truncated dendrite arms (sawed off while sectioning)

The "dendrite" on left is actually a top section of the longer primary dendrite (growing out of plane).

Microstructural control

Directional solidification is a promising technique for orienting the microstructures For optimal mechanical properties. The major issue is the processing temperature.

