U.S. Department of Energy Office of Fossil Energy

26th Annual Conference on Fossil Energy Materials

Regis K. Conrad

Director, Division of Cross-cutting Research

Integrated Coal Program Technology Roadmap

CCUS

U.S. Energy Challenges

Energy Security

Monthly Spot Price OK WTI

Share of Reserves Held by NOC/IOC

Competitiveness

Global Lithium-ion Battery Manufacturing (2009)

Worldwide Shipments of Solar Photovoltaics (MW)

Environmental Impacts

CO₂ Emissions in OECD vs non-OECD Countries

Water Withdrawals in % By Category (2005)

Technology Headroom for DOE

Building and Industrial Efficiency

- Data collection and usage
- Integrated systems analyses
- Next-gen processes and products

Clean (Low-Carbon) Power

- Drive down costs
- Improve Plant Efficiency
 - Advanced Materials
 - Sensors and Controls
- Coupling between energy and water use

Grid Modernization

- Communication and data
- Management and control
- Energy storage

Fossil Energy: Helping Achieve DOE's Mission

Transform Our Energy Systems

- Cost-competitive carbon capture, utilization, and storage technology
- Advanced modeling and simulation to reduce upfront cost, risk of CCUS
- •Increased efficiency for cleaner use of coal.
- Safe and sustainable development of unconventional oil and gas resources
- •International partnerships for clean energy deployment

Science & Engineering Enterprise

 Under graduate, graduate and post-graduate research and internship support

Secure Our Nation

- Technology innovation allowing fossil fuels to continue to be part of a diversified, lowcarbon energy portfolio
- •Strategic Petroleum Reserve and Northeast Home Heating Oil Reserve at full readiness

Management & Operational Excellence

• FE-wide business review assessment for mission success

Times Have Changed

Then Now

2009

Strong likelihood of cap-and-trade legislation.

EOR applications seen as niche opportunity to offset some cost; Oil \$50 - \$60/barrel;

CCS storage focus with CO₂ tax support.

Goal by 2020: + 35% LCOE

LCOE: Levelized Cost of Electricity

2012

Cap-and-trade legislation unlikely in the near term.

No deadlines for utilities, no reason to invest in carbon capture and storage.

Oil more expensive = \$100/barrel; global competition stronger.

CCUS has been successfully developed in FE demos.

Current Capture Cost: \$70-90/Ton Goal by 2020: \$40/Ton

Carbon Capture Cost can support a long-term business case to invest.

Addressing Storage Challenges: Regional Carbon Sequestration Partnerships

- Injection Ongoing
- 2012 Injection Scheduled
- Injection Scheduled 2012-2015

Note: Some locations presented on map may differ from final injection location

- Large-scale injection wells
- Establishing monitoring and verification protocols.
- Addressing regulatory, environmental, and outreach issues.
- Establishing Best Practices
- Assessing risks
- Validating sequestration technology and infrastructure.
- Engaging regional, state, and local governments

Carbon Storage Program – Core R&D

Monitoring, Verification, and Accounting

- Atmospheric and Remote Sensing Technologies
- Near surface monitoring of soils and vadose zone
- Subsurface monitoring in and near injection zone
- Intelligent monitoring systems for field management

CO₂ Utilization

- Enhanced Oil Recovery
- Conversion to commodities into chemicals and plastics
- Non-geologic storage in cement and minerals
- Beneficial use of produced waters

Geologic Storage

- Wellbore construction and materials technologies
- Mitigation technologies for wells and natural pathways
- Managing fluid flow, reservoir pressure, and brines
- Geochemical effects of CO₂ injection
- Geomechanical effects on reservoirs and seals

Simulation and Risk Assessment

- Thermal and hydrologic fate and transport
- Geochemical simulations
- Geomechanical simulations
- Predicting biologic impacts on storage formations
- Risk assessment and quantification

Carbon Capture Simulation Initiative (CCSI) and National Risk Assessment Partnership (NRAP)

Science-Based Computational Tools for Accelerating CCS
Technology Development & Deployment

Identify promising concepts

Develop optimal designs

Quantify technical risk in scale-up

Accelerate learning during development & deployment

CO₂-Enhanced Oil Recovery

- The "Un-Mined Gold" Story for Energy and Jobs
- ▶ Benefits¹ of CO₂-EOR:
 - \$10 trillion in economic activity over 30 years;
 - 2.5 million jobs
 - 30 40 percent reduction in imported oil

Domestic Oil Supplies and CO₂ Demand (Storage) Volumes from "Next Generation" CO₂-EOR Technology**

¹ Source: U.S. Carbon Sequestration Council

Materials Performance in CO₂ and **CO₂-Steam Environments**

- Evaluate oxidation/corrosion performance of metallic structural alloys in pure CO₂ and in CO₂-steam environments over a wide temperature range
- Establish the kinetics of scaling and internal penetration, if any, and develop correlations for long term performance
- Identify viable alloys for structural and gas turbine applications Evaluate the influence of exposure environment on the mechanical properties (especially creep, fatigue, and creep-fatigue) of the candidate alloys

Breakthrough Concepts Direction

Computational Materials Design with Experimental Verification

Combine computational materials development with experimental verification to engineer new high performance materials

Parting Thoughts

- **Energy Security:** Promote U.S. energy security by increasing domestic oil production and reducing imports.
- <u>Jobs:</u> Create millions of new high paying **jobs** in the energy and related sectors.
- Revenues: Provide trillions of dollars of new domestic revenues and economic activity.
- Trade: Improve the U.S. balance of trade by significant reductions in oil imports.
- CCS and Climate Change Impact: Help achieve a meaningful and significant reduction in U.S. CO₂ emissions through safe and permanent geologic storage for **EOR** operations.

Questions

Advanced 2nd Generation CCS and

Transformational Capture Technologies

2010

Ready for Demonstration

2015

2020

EOR – How It Works

Clean Coal - Major U.S. Demonstrations

R&D program

Advanced IGCC Systems

Driving Down the Cost

Advanced Gasification Fuel Cell Systems

Driving Down the Cost

Low Cost Combustion Power Solutions ↓ Power Cost and ↑ CCUS Potential

A – Supercritical PC w/Current Amine Scrubbing

C – USC PC w/Amine + Advanced Compression

E – USC PC + Adv. CO₂ Membrane + Adv. Comp.

G – Adv. USC PC + Adv. Membrane + Adv. Comp.

B – Ultrasupercritical PC w/Current Amine Scrubbing

D – USC PC w/Advanced CO₂ Sorbent + Adv. Comp.

F – Adv. USC PC + Adv. Sorbent + Adv. Compression

H – Advanced Oxycombustion Power Cycles

CO₂ transport, storage and monitoring cost

