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Application Goals 

A-USC Steam Coal Fired: 

•   Boiler / Burner Materials 

•   Heat exchanger tubing 

•   Exhaust liner 

•  760oC at 35MPa 
Supercritical Steam 

 Create a simplified process for production of precursor 
powders and oxide dispersion strengthened ferritic stainless 
steel alloys 
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Highly Demanding Operating Conditions for Fe 

Strengthening 

Mechanism 

Effective  

Temperature 

Work Hardening ~0.3 Tm 

Grain Size ~0.3 Tm 

Solid Solution 

Strengthening 
~0.4 Tm 

Precipitation 

Strengthening 
~0.6 Tm 

Oxide Dispersion 

Strengthening 
~0.9 Tm 

  Oxide dispersion strengthening is best option for elevated temperature 
microstructure stability and creep resistance of Fe-base alloys  

A-USC 
Conditions 



Iowa State University Iowa State University  
of Science and Technology 

Dislocation Substructure 

MA-956 

Recrystallized 
Recovered 

B.A. Wilcox, et. al., 1967. 

M.F. Hupalo, et al., 2004. 

 TMT can be used to 
develop a dislocation 
substructure for 
increased alloy 
strengthening  

  Sub-grain stability is 
highly dependent on the 
spatial distribution of the 
dispersoids 

 Critical balance between 
driving and dragging 
forces (Zener pinning) 
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Fe-Based ODS Processing Comparison 
Mechanical Alloying 

•  Long milling times  

•  Batch commercial process (< 2000 kg) 

•  Powder contamination (C, O, N, Ar) 

•  Anisotropic microstructure 

Gas Atomization (RSP) 

•  Higher processing rates (10-20 kg/min) 

•  Continuous processing capacity  

•  Minimized contamination 

•  Isotropic microstructure capability 

* 

** 

Material  
Cost/kg 
(USD)  

Notes  

Ferritic Stainless Steel  ~$2-5 446 Plate form 

Fe-based ODS  ~$165, ~$345 MA956 Sheet (Special Metals), PM 2000 (Plansee) 

Ni-based ~$30-35 Inconel 718 Sheet (Special Metals), Inconel 617 (Special Metals)  

ODS 
Processing 

Cost! 

**R.M. German, 2005. 

*C. Suryanarayana, 1998.  
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Gas Atomization Reaction Synthesis 

~0.1 sec. 

Alloy  

Element 
Primary Function 

Cr 
Surface reactant 

Oxidation resistance 

Y Dispersoid former 

Ti 
Surface  reactant 

Dispersoid stabilizer  

Hf 
Surface  reactant  

Dispersoid stabilizer 

O 
Surface oxidant  

  Dispersoid former 

In situ alloying addition of oxygen (primarily) as transient 
powder surface oxide. 

Ar-O2 
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Y-enriched dispersoid 
formation 

Chemical Reservoir Alloy Design  

Dissociation of  

Cr-enriched boundary oxide 

Oxygen  

Diffusion 

Y-enriched  

Dispersoid formation 
(internal oxidation) 

Metastable Cr-Enriched Oxide 

Y-enriched intermetallic particles 

Oxygen 

Y-enriched oxide dispersoids 

I. Barin, et al., 1992 

Internal Oxygen Exchange Reaction 

 Y-enriched intermetallic  compound 
(IMC)  precipitation (Y reservoir) 

 Dissociation of Cr-enriched prior particle 
boundary (PPB) oxide (O reservoir) 

Y-enriched IMC 

Precipitation 
(solidification structure) 

Initial 
microstructure 

with continuous 
PPB oxide 

Dissociation of 
metastable PPB oxide  Y-enriched 

intermetallic 
formation Oxygen diffusion 

Completed oxygen  
exchange reaction  

(proper balance of Y and O) 
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Chemical Reservoir Phase Evolution 

Fe-15.70Cr-0.20Y-0.49Ti-1.16O (at%)  

/ Fe11TiY 

~1.0 vol. % Dispersoid 

As-Atomized 
Powder 

HIP 
Consolidation 

850°C 

HIP 
Consolidation 

1300°C 
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GARS Process Control 
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Resulting Oxygen Content Control Approach 

Y-containing 
surface oxide 

Y-containing 
surface oxide 

Trumpet pour 
tube 

  Rapid oxidation kinetics 

  Empirically determined 
linear oxidation 
dependence on pO2

  

  Decreased oxidation 
kinetics when Y present 
in the surface oxide layer

 

  Sensitive to atomization 
processing parameters 
(i.e., gas nozzle and pour 
tube design) 

E.J. Felten, 1991. 
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Surface Oxide Analysis (AES) 

5μm 20μ
m 

40μ
m 

Decreasing particle size 

Decreased surface oxidation 

CR-156Y-Hf: Fe-15.84Cr-0.11Hf-0.18Y at.%  

~33 nm ~24 nm ~9 nm 
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Resulting Surface Oxide Layer Thickness 

 Why is there a particle size dependence? 

-Kubaschewski, et al. 1962. 

  All oxygen is in the form of a 
uniform surface oxide layer 

  Cr2O3 surface oxide formation 

Confirmed using TEM 

Assumptions 
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Predicted Oxide Layer Thickness 

  Utilizing the droplet cooling curves (T vs. t) 

  Oxidation reaction deemed complete when δ < 400 nm sec-1 

  Majority of oxidation occurs prior to droplet solidification 

Solidification 

Cr2O3 formation 
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Comparison with Experimental Results 

  Initially optimized for CR-118 (parabolic oxidation pre-factor) 

  Modified atomization processing parameters and ran model for each similar CR-alloy 

  Recommended as a processing tool to predict and control in situ O additions during atomization 

Cr2O3 formation 
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ODS Microstructure Control 
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5µm 5µm 2µm 

10 nm 20 nm 

Fe-(Y,Hf) Cluster 
Size: 2-5 nm 

No. Density: 2-6x 1022 m-3 Fe-(Y,Hf) Precipitate 

As-Atomized Solidification Structure CR-156Y-Hf: Fe-15.84Cr-0.11Hf-0.18Y at.%  

  Microsegregation 
observed in coarser 
powders 

  Apparent solute trapping 
in ultra-fine (dia. < 5µm) 
powders 

  APT highlighted 
intermetallic clusters 

Dia. ~40μm Dia. ~20μm Dia. ~5μm 



Iowa State University Iowa State University  
of Science and Technology 

Calculated Solidification Velocity 

Hypercooling Threshold 

Hypercooling Threshold 

15 μm 

15 μm 
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Calculated Solidification Velocity 

5µm 

5µm 

2µm 

Solute 
Trapping! 

Micro-
segregation 

Micro-
segregation 

Hypercooling Threshold 

CR-156Y-Hf: Fe-15.84Cr-0.11Hf-0.18Y at.%  
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0.2μm 50 nm 50 nm 

20 nm 20 nm 20 nm 

Precursor IMC Precipitate Distribution CR-156Y-Hf: Fe-15.84Cr-0.11Hf-0.18Y at.%  

As-HIPed 700°C – 300MPa – 4hr 

Dia. 20-53μm Dia. 5-20μm Dia. < 5μm 

Fe-(Y,Hf) IMC precipitates 

2 – 8 nm  
3x1022 m-3 

2 – 6 nm  
5x1022 m-3 

3 – 7 nm  
50-100 nm 
3x1022 m-3 

Fe-(Y,Hf) IMC precipitates Fe-(Y,Hf) IMC precipitates 
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50 nm 50 nm 50 nm 

10 nm 10 nm 10 nm 

Resulting ODS microstructure CR-156Y-Hf: Fe-15.84Cr-0.11Hf-0.18Y at.%  

Dia. 20-53μm Dia. 5-20μm Dia. < 5μm 

Heat Treated 1200°C – 2.5hr – Vac. 

Y-Hf-O dispersoids Y-Hf-O dispersoids Y-Hf-O dispersoids 

5 – 20 nm  
8x1021 m-3 

20 - 50 nm  
3x1021 m-3 

3 – 12 nm  
3x1022 m-3 
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Thermal Mechanical Treatment 
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ODS Microstructure 

f) 

500 nm 

500 nm 50 nm 

50 nm 20 nm 

20 nm 

CR-166 (< 20μm): Fe-15.91Cr-0.12Ti-0.09Y-0.49O at.% 
CR-166 (45-75µm): Fe-15.91Cr-0.12Ti-0.09Y-0.33O at.%  

Y2Ti2O7 Dispersoids 
No. Density:~1-4x1021 m-3 

Y2Ti2O7 Dispersoids 
No. Density:~1-10x1020 m-3 

Cellular Pattern 
Interior Core Structure 
~0.5 vol.% dispersoids 

Cellular Pattern 
~0.5 vol.% dispersoids 
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Dia.  < 20 µm – H.T. 1200°C 
Dia.  < 20 µm – As-Cold Rolled 
Dia.  < 20 µm – Annealed 
Dia. 45-75 µm - H.T. 1200°C 
Dia. 45-75 µm - As-Cold Rolled 
Dia. 45-75 µm – Annealed 

Recrystallization 

  ~2X increase in 
microhardness 

  Cold work threshold 

  Microstructure dependent 
 (Zener Limit)  

Proposed operating temperature 

Cold Rolled Microhardness CR-166 (< 20μm): Fe-15.91Cr-0.12Ti-0.09Y-0.49O at.% 
CR-166 (45-75µm): Fe-15.91Cr-0.12Ti-0.09Y-0.33O at.%  

Cold Rolled to ~85 % Reduction in Area 
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Annealed Microstructure  
Heat Treated 1200°C Cold Rolled 85% RA +  

Annealed 500°C-1hr-Air 
Cold Rolled 85% RA + Annealed 

500°C-1hr-Air + 800°C-1hr-Air 

1 μm 

1 μm 

1 μm 

1 μm 1 μm 

1 μm 

CR-166 (< 20μm): Fe-15.91Cr-0.12Ti-0.09Y-0.49O at.% 
CR-166 (45-75µm): Fe-15.91Cr-0.12Ti-0.09Y-0.33O at.%  

Cellular Pattern 
Interior Core 

Cellular Pattern 

Grain size ~0.3µm Grain size ~1.1µm Grain size ~14µm 

Grain size ~13µm Grain size ~0.3µm Grain size ~1.1µm 
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Mechanical Properties CR-166 (< 20μm): Fe-15.91Cr-0.12Ti-0.09Y-0.49O at.% 
CR-166 (45-75µm): Fe-15.91Cr-0.12Ti-0.09Y-0.33O at.%  

Ductility Peak 

  Mean free path for dislocation movement 
(Orowan) 

  Dislocation climb and detachment stress 
(interfacial pinning) 

  A threefold increase in total elongation 

SS-3 Tensile  Specimen 

Interfacial 
Pinning 

Orowan 

Threefold 
Increase 
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Thermal Stability 
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Thermal Stability (1200°C) CR-164HfY: Fe-15.55Cr-0.12Hf-0.09Y-1.04O at.% 
CR-166TiY: Fe-15.91Cr-0.12Ti-0.09Y-0.49O at.%  

1200°C 2.5 hr 1200°C 100 hr 1200°C 1,000 hr 

Y-Hf-O Dispersoids 
No. Density:  ~3x1021 m-3 

Y-Hf-O Dispersoids 
No. Density:  ~2x1021 m-3 

Y-Hf-O Dispersoids 
No. Density:  ~9x1020 m-3 

Y-Ti-O Dispersoids 
No. Density:  ~3x1021 m-3 

Y-Ti-O Dispersoids 
No. Density:  ~2x1021 m-3 

Y-Ti-O Dispersoids 
No. Density:  ~6x1020 m-3 
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Microstructure Evolution 

Time at 1200°C 

(hrs) 

CR-164HfY 

Calc. Radius (nm) 

CR-166TiY 

Calc. Radius (nm) 

2.5 11.7 19.2 

100 11.9 19.8 

1,000 12.9 22.0 

CR-164HfY: Fe-15.55Cr-0.12Hf-0.09Y-1.04O at.% 
CR-166TiY: Fe-15.91Cr-0.12Ti-0.09Y-0.49O at.%  

Microhardness 
drop 

Hf vs. Ti 
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Future Work 
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New Fe-based ODS atomization trial 

GARS Process Control 

Composition Fe-16Cr-0.30Hf-0.20Y-0.70O at.% 

 Size Range Goal Dia. < 10µm 

Reaction Gas Ar-0.06O2 vol.% 

Dispersoid Phase Y2Hf2O7 

Atomization Parameters 

Nozzle 45° (closed wake) 

Pressure 600 psi 

Pour Tube Super heating composite 

Metal Flow Rate 1 kg/min 
Close-Coupled 

HPGA 

Focused 
Supersonic Gas 

Patterns   
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Superheat Pour Tube Module 

Tungsten YSZ Final Part Yttria 

  Efficiently add ~250°C of superheat to the molten alloy as it is transported from 
the crucible to the high pressure atomization gas 

   Prevents “freeze-out” during atomization runs that utilize low metal flow rates 
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ORNL Collaboration Fe-16.8Cr-0.90W-0.62Ti-0.08Y-0.26O at.% 
(Fe-15.1Cr-2.95W-0.53Ti-0.12Y-0.07O wt.%) 

 GARS Powders (GA-130TiY: Dia. < 20µm) 

 Ball Milled (5hr) 

 Loaded into HIP canister 

 Vacuum outgassed (415°C) 

 Seal HIP canister (E-beam weld) 

 HIP cycle: 850°C – 4hr – 300 MPa (Ar) 

 Remove canister and machine into bar 

 Thermal mechanical treatment (hot rolling) 

 Machine and test creep specimens at ORNL 

Loaded HIP can 

20µm 20µm 

As-atomized powders As-milled particulate 
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Alloy Design (Al Additions) 

  Simulate and identify internal O-exchange reactions 
within Fe-base alloys containing Al additions 

  Evaluate the ability to form and sustain mixed Y-Hf-O 
dispersoids with Al present in the α-Fe matrix 

  Resist  YAG/YAM/YAP oxide dispersoid formation 

Fe-15.6Cr-10Al-0.36Hf-0.12Y at% 
(Fe-15Cr-5Al-1.2Hf-0.2Y wt%) 

Cr/Cr2O3  Rhines Pack 
(controlled PO2

)  
Chill Cast  

Fingers 
Polished  

(6 mm cubes) 
Heat treated at 1200°C 

- L. Zhang et al., Acta Mat. 57, 2009 
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Microstructure Evolution 

200 
μm 

Cr / Cr2O3 Cr / Cr2O3 

21
5µ

m
 

37
5µ

m
 

HT 1200°C for 2.5 hr HT 1200°C for 10 hr 

Fe-15.6Cr-10Al-0.36Hf-0.12Y at% 
(Fe-15Cr-5Al-1.2Hf-0.2Y wt%) 

Al2O3 

Initial intermetallic ppts 
(Fe17Y2)  

Internal oxidation zone 

Continuous 
surface oxide 

formation 
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Preliminary Phase Analysis (serial XRD) 

Al2O3 

Cr2O3 

Fe 

Fe17Y2 

Y2Hf2O7 

HT 1200°C for 10 hr 

HfO2 

Al2O3 

Al2O3 

HfO2 

Y2Hf2O7 

HfO2 

  Continuous surface layer of α-Al2O3 

  No detectable Y3Al5O12 (YAG), YAlO3 (YAP), or Y4Al2O9 (YAM) at the surface or within the 
internal oxidation zone 

  Mixed Y-Hf-O (Y2Hf2O7) throughout the internal oxidation zone 

Primary 
Oxide  Phase 

Phases 
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Conclusions 
  GARS was successfully demonstrated as a simplified method to 

produce precursor powders for ODS ferritic stainless steel alloys 

  Droplet cooling curves were used to formulate a theoretical 
oxidation model to accurately predict the resulting surface oxide 
layer thickness 

  Microstructural results showed a clear ability to manipulate oxide 
and intermetallic phases within each CR-alloy using elevated 
temperature consolidation and heat treatment   

  Phase analysis confirmed the operation of an O exchange reaction 
between PPB oxide and Y-enriched IMC precipitates, resulting in the 
formation of nano-metric dispersoids 

  Initial Y-enriched IMC precipitate spatial distribution was shown to 
be highly dependent on powder particle size (i.e., solidification rate) 



Iowa State University Iowa State University  
of Science and Technology 

Conclusions 

  Dispersoid thermal stability was enhanced through the addition of 
Hf as a substitute for Ti in these CR-alloys 

  ODS microstructures fabricated from ultra-fine (dia. < 5µm) powders 
resulted in the most ideal spatial distribution of nano-metric oxide 
dispersoids (dia. < 10 nm) 

  This solidification dependence suggests the need to modify the 
atomization processing parameters to dramatically increase the yield 
of ultra-fine powders, in order to achieve a more ideal ODS 
microstructure while maintaining this simplified processing scheme 

  Initial elevated temperature mechanical testing revealed that these 
simplified CR-alloys contained a Y.S. similar to MA-956, while 
maintaining a threefold increase in total ductility 
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