Atomization and Powder Processing of High Temperature Ferritic Stainless Steel

Iver E. Anderson1, Joel R. Rieken1,2, David J. Byrd1

1Division of Materials Sciences and Engineering, Ames Laboratory (USDOE), Ames, IA
2Materials Science and Engineering Department, Iowa State University, Ames, IA

26th Annual Conference on Fossil Energy Materials

Pittsburgh, PA

April 18, 2012

Support from DOE-Fossil Energy-Advanced Research Materials Program is gratefully acknowledged through Ames Laboratory contract no. DE-AC02-07CH11358
Application Goals

➢ Create a simplified process for production of precursor powders and oxide dispersion strengthened ferritic stainless steel alloys

A-USC Steam Coal Fired:

• Boiler / Burner Materials
• Heat exchanger tubing
• Exhaust liner

• 760°C at 35MPa Supercritical Steam
Highly Demanding Operating Conditions for Fe

<table>
<thead>
<tr>
<th>Strengthening Mechanism</th>
<th>Effective Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Hardening</td>
<td>~0.3 T_m</td>
</tr>
<tr>
<td>Grain Size</td>
<td>~0.3 T_m</td>
</tr>
<tr>
<td>Solid Solution Strengthening</td>
<td>~0.4 T_m</td>
</tr>
<tr>
<td>Precipitation Strengthening</td>
<td>~0.6 T_m</td>
</tr>
<tr>
<td>Oxide Dispersion Strengthening</td>
<td>~0.9 T_m</td>
</tr>
</tbody>
</table>

- Oxide dispersion strengthening is best option for elevated temperature microstructure stability and creep resistance of Fe-base alloys.

![Graph showing A-USC conditions](image)
Dislocation Substructure

- TMT can be used to develop a dislocation substructure for increased alloy strengthening
- Sub-grain stability is highly dependent on the spatial distribution of the dispersoids
- Critical balance between driving and dragging forces (Zener pinning)

B.A. Wilcox, et. al., 1967.

Fe-Based ODS Processing Comparison

* Mechanical Alloying
 - Long milling times
 - Batch commercial process (< 2000 kg)
 - Powder contamination (C, O, N, Ar)
 - Anisotropic microstructure

** Gas Atomization (RSP)
 - Higher processing rates (10-20 kg/min)
 - Continuous processing capacity
 - Minimized contamination
 - Isotropic microstructure capability

<table>
<thead>
<tr>
<th>Material</th>
<th>Cost/kg (USD)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferritic Stainless Steel</td>
<td>~$2-5</td>
<td>446 Plate form</td>
</tr>
<tr>
<td>Fe-based ODS</td>
<td>~$165, ~$345</td>
<td>MA956 Sheet (Special Metals), PM 2000 (Plansee)</td>
</tr>
<tr>
<td>Ni-based</td>
<td>~$30-35</td>
<td>Inconel 718 Sheet (Special Metals), Inconel 617 (Special Metals)</td>
</tr>
</tbody>
</table>

* R.M. German, 2005.

ODS Processing Cost!
Gas Atomization Reaction Synthesis

In situ alloying addition of oxygen (primarily) as transient powder surface oxide.

<table>
<thead>
<tr>
<th>Alloy Element</th>
<th>Primary Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>Surface reactant, Oxidation resistance</td>
</tr>
<tr>
<td>Y</td>
<td>Dispersoid former</td>
</tr>
<tr>
<td>Ti</td>
<td>Surface reactant, Dispersoid stabilizer</td>
</tr>
<tr>
<td>Hf</td>
<td>Surface reactant, Dispersoid stabilizer</td>
</tr>
<tr>
<td>O</td>
<td>Surface oxidant, Dispersoid former</td>
</tr>
</tbody>
</table>
Internal Oxygen Exchange Reaction

- Y-enriched intermetallic compound (IMC) precipitation (Y reservoir)
- Dissociation of Cr-enriched prior particle boundary (PPB) oxide (O reservoir)

I. Barin, et al., 1992
Chemical Reservoir Phase Evolution

As-Atomized Powder

HIP Consolidation 850°C

HIP Consolidation 1300°C

Fe-15.70Cr-0.20Y-0.49Ti-1.16O (at%)
GARS Process Control
Resulting Oxygen Content Control Approach

- Rapid oxidation kinetics
- Empirically determined linear oxidation dependence on p_{O_2}
 \[k_p \propto (P_{O_2})^{1/n} \]
 Where, $n = 1$
- Decreased oxidation kinetics when Y present in the surface oxide layer
- Sensitive to atomization processing parameters (i.e., gas nozzle and pour tube design)

Surface Oxide Analysis (AES)

CR-156Y-Hf: Fe-15.84Cr-0.11Hf-0.18Y at.%

Decreasing particle size

Decreased surface oxidation
Resulting Surface Oxide Layer Thickness

- Why is there a particle size dependence?
- All oxygen is in the form of a uniform surface oxide layer
- Cr$_2$O$_3$ surface oxide formation

Assumptions

\[
\xi_{ox} = \frac{\Delta m_{O_2}W_{ox}}{S_dW_{O_2}y\rho_{ox}}
\]

Where, M_{aO_y}

Confirmed using TEM

Predicted Oxide Layer Thickness

- Utilizing the droplet cooling curves (T vs. t)
- Oxidation reaction deemed complete when $\delta < 400 \text{ nm sec}^{-1}$
- Majority of oxidation occurs prior to droplet solidification

Cr$_2$O$_3$ formation

Solidification

Parabolic Oxidation Rate Constant

$$k_p = B \exp \left(\frac{-E}{RT} \right)$$

Where, $E=249\text{kJ/mol}$ (Gulbransen et al., 1957)

$B=5 \text{g}^2\text{cm}^{-4}\text{s}^{-1}$ (experimental)

$$k_p \propto (P_{O_2})^{\frac{1}{n}} \quad n=1 \text{ (experimental)}$$

Oxygen Mass Gained

$$\Delta m_{O_2}(\Delta t) = \left(\frac{k_{p,i} + k_{p,f}}{2} \right)^{\frac{1}{2}} \cdot 2S_d \left(t_f^{\frac{1}{2}} - t_i^{\frac{1}{2}} \right)$$

Resulting Oxide Layer Thickness

$$\xi_{ox} = \frac{\Delta m_{O_2}W_{ox}}{S_dW_{O_2}y_{\rho_{ox}}}$$

Oxide Growth

$$\delta = \frac{\Delta \xi_{ox}}{\Delta t}$$
Comparison with Experimental Results

- Initially optimized for CR-118 (parabolic oxidation pre-factor)
- Modified atomization processing parameters and ran model for each similar CR-alloy
- Recommended as a processing tool to predict and control in situ O additions during atomization
ODS Microstructure Control
As-Atomized Solidification Structure

- Microsegregation observed in coarser powders
- Apparent solute trapping in ultra-fine (dia. < 5µm) powders
- APT highlighted intermetallic clusters

CR-156Y-Hf: Fe-15.84Cr-0.11Hf-0.18Y at.%

Fe-(Y,Hf) Cluster
Size: 2-5 nm
No. Density: 2-6x 10^{22} m^{-3}
Calculated Solidification Velocity

\[
\Omega \equiv \frac{T_L - T_N}{\Delta H_f / C_d}
\]

Approximation of the Ivanstov Function

\[
Pe_t = a \left(\frac{\Omega}{1 - \Omega} \right)^b
\]
(Wang et al., 1993)

Truncated LKT Model

\[
r_{den} = \frac{\Gamma / \tau^*}{(\Delta H_f / C_d) Pe_t (1 - n)}
\]

(Lipton, Kurz, and Trivedi, 1987)

Planar Stability, when \(\Omega \geq 1 \)

\[
(V_{den})_{abs} = \frac{\alpha_L \Delta H_f}{\Gamma c_{dL}}
\]

(Trivedi and Kurz, 1986)
Calculated Solidification Velocity

Planar (microsegregation-free) growth

\[(V_{den})_{abs} = \frac{\alpha L \Delta H_f}{G_c d L}\]
(Trivedi and Kurz, 1986)

\[Q_{re} = \Delta H_f V_{den} A_d \rho_d\]
Precursor IMC Precipitate Distribution

CR-156Y-Hf: Fe-15.84Cr-0.11Hf-0.18Y at.%

As-HIPed 700°C – 300MPa – 4hr

Fe-(Y,Hf) IMC precipitates

Dia. 20-53 µm

Dia. 5-20 µm

Dia. < 5 µm

Fe-(Y,Hf) IMC precipitates

Fe-(Y,Hf) IMC precipitates

Fe-(Y,Hf) IMC precipitates
Resulting ODS microstructure

Heat Treated 1200°C – 2.5hr – Vac.

CR-156Y-Hf: Fe-15.84Cr-0.11Hf-0.18Y at.%

Y-Hf-O dispersoids

Dia. 20-53 μm

Dia. 5-20 μm

Dia. < 5 μm

Y-Hf-O dispersoids

50 nm

50 nm

50 nm

50 nm

Y-Hf-O dispersoids

20 - 50 nm

3x10^{21} m^{-3}

5 - 20 nm

8x10^{21} m^{-3}

3 - 12 nm

3x10^{22} m^{-3}

Dia. 20-53 μm

Dia. 5-20 μm

Dia. < 5 μm
Thermal Mechanical Treatment
ODS Microstructure

CR-166 (< 20 µm): Fe-15.91Cr-0.12Ti-0.09Y-0.49O at.%
CR-166 (45-75µm): Fe-15.91Cr-0.12Ti-0.09Y-0.33O at.%

Cellular Pattern
- Interior Core Structure
 - ~0.5 vol.% dispersoids

Y₂Ti₂O₇ Dispersoids
- No. Density: ~1-4x10²¹ m⁻³

Cellular Pattern
- ~0.5 vol.% dispersoids

Dispersoids
- No. Density: ~1-10x10²⁰ m⁻³
Cold Rolled Microhardness

- CR-166 (< 20 µm): Fe-15.91Cr-0.12Ti-0.09Y-0.49O at.%
- CR-166 (45-75µm): Fe-15.91Cr-0.12Ti-0.09Y-0.33O at.%

Cold Rolled to ~85 % Reduction in Area

- ~2X increase in microhardness
- Cold work threshold
- Microstructure dependent (Zener Limit)
Annealed Microstructure

Heat Treated 1200°C

Cellular Pattern Interior Core

Cold Rolled 85% RA + Annealed 500°C-1hr-Air

Cold Rolled 85% RA + Annealed 500°C-1hr-Air + 800°C-1hr-Air

CR-166 (< 20 µm): Fe-15.91Cr-0.12Ti-0.09Y-0.49O at.%
CR-166 (45-75 µm): Fe-15.91Cr-0.12Ti-0.09Y-0.33O at.%

Grain size ~1.1 µm
Grain size ~0.3 µm
Grain size ~13 µm

Grain size ~0.3 µm
Grain size ~1.1 µm
Grain size ~14 µm
Mechanical Properties

CR-166 (< 20 µm): Fe-15.91Cr-0.12Ti-0.09Y-0.49O at.%
CR-166 (45-75µm): Fe-15.91Cr-0.12Ti-0.09Y-0.33O at.%

- Mean free path for dislocation movement (Orowan)
- Dislocation climb and detachment stress (interfacial pinning)
- A threefold increase in total elongation
Thermal Stability
Thermal Stability (1200°C)

CR-164HfY: Fe-15.55Cr-0.12Hf-0.09Y-1.04O at.%
CR-166TiY: Fe-15.91Cr-0.12Ti-0.09Y-0.49O at.%

1200°C 2.5 hr
- Y-Hf-O Dispersoids
 No. Density: $\sim 3 \times 10^{21} \text{ m}^{-3}$

1200°C 100 hr
- Y-Hf-O Dispersoids
 No. Density: $\sim 2 \times 10^{21} \text{ m}^{-3}$

1200°C 1,000 hr
- Y-Hf-O Dispersoids
 No. Density: $\sim 9 \times 10^{20} \text{ m}^{-3}$

- Y-Ti-O Dispersoids
 No. Density: $\sim 3 \times 10^{21} \text{ m}^{-3}$

- Y-Ti-O Dispersoids
 No. Density: $\sim 2 \times 10^{21} \text{ m}^{-3}$

- Y-Ti-O Dispersoids
 No. Density: $\sim 6 \times 10^{20} \text{ m}^{-3}$
Microstructure Evolution

CR-164HfY: Fe-15.55Cr-0.12Hf-0.09Y-1.04O at.%
CR-166TiY: Fe-15.91Cr-0.12Ti-0.09Y-0.49O at.%

\[R_c = \frac{4r}{3f} \]

(C.S. Smith, 1948)

Hf vs. Ti

Microhardness drop

\[t \approx \frac{k\lambda}{\beta \cos \theta\beta} \]

(B.D. Cullity, 1967)
Future Work
New Fe-based ODS atomization trial

GARS Process Control

<table>
<thead>
<tr>
<th>Composition</th>
<th>Fe-16Cr-0.30Hf-0.20Y-0.70O at.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size Range Goal</td>
<td>Dia. < 10(\mu)m</td>
</tr>
<tr>
<td>Reaction Gas</td>
<td>Ar-0.06O(_2) vol.%</td>
</tr>
<tr>
<td>Dispersoid Phase</td>
<td>(\text{Y}_2\text{Hf}_2\text{O}_7)</td>
</tr>
</tbody>
</table>

Atomization Parameters

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>45° (closed wake)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>600 psi</td>
</tr>
<tr>
<td>Pour Tube</td>
<td>Super heating composite</td>
</tr>
<tr>
<td>Metal Flow Rate</td>
<td>1 kg/min</td>
</tr>
</tbody>
</table>
Superheat Pour Tube Module

- Efficiently add ~250°C of superheat to the molten alloy as it is transported from the crucible to the high pressure atomization gas
- Prevents “freeze-out” during atomization runs that utilize low metal flow rates
Fe-16.8Cr-0.90W-0.62Ti-0.08Y-0.26O at.%(Fe-15.1Cr-2.95W-0.53Ti-0.12Y-0.07O wt.%)
Alloy Design (Al Additions)

- Simulate and identify internal O-exchange reactions within Fe-base alloys containing Al additions
- Evaluate the ability to form and sustain mixed Y-Hf-O dispersoids with Al present in the α-Fe matrix
- Resist YAG/YAM/YAP oxide dispersoid formation

Fe-15.6Cr-10Al-0.36Hf-0.12Y at% (Fe-15Cr-5Al-1.2Hf-0.2Y wt%)

Chill Cast Fingers
Polished (6 mm cubes)
Cr/Cr$_2$O$_3$ Rhines Pack (controlled P_O)
Heat treated at 1200°C

- L. Zhang et al., Acta Mat. 57, 2009
Microstructure Evolution

Fe-15.6Cr-10Al-0.36Hf-0.12Y at%
(Fe-15Cr-5Al-1.2Hf-0.2Y wt%)

Initial intermetallic ppts
(Fe_{17}Y_{2})

Internal oxidation zone

HT 1200°C for 2.5 hr

HT 1200°C for 10 hr

Continuous surface oxide formation
Continuous surface layer of α-Al$_2$O$_3$

No detectable Y$_3$Al$_5$O$_{12}$ (YAG), YAlO$_3$ (YAP), or Y$_4$Al$_2$O$_9$ (YAM) at the surface or within the internal oxidation zone

Mixed Y-Hf-O ($Y_2Hf_2O_7$) throughout the internal oxidation zone
Conclusions

- GARS was successfully demonstrated as a simplified method to produce precursor powders for ODS ferritic stainless steel alloys
- Droplet cooling curves were used to formulate a theoretical oxidation model to accurately predict the resulting surface oxide layer thickness
- Microstructural results showed a clear ability to manipulate oxide and intermetallic phases within each CR-alloy using elevated temperature consolidation and heat treatment
- Phase analysis confirmed the operation of an O exchange reaction between PPB oxide and Y-enriched IMC precipitates, resulting in the formation of nano-metric dispersoids
- Initial Y-enriched IMC precipitate spatial distribution was shown to be highly dependent on powder particle size (i.e., solidification rate)
Conclusions

- Dispersoid thermal stability was enhanced through the addition of Hf as a substitute for Ti in these CR-alloys.

- ODS microstructures fabricated from ultra-fine (dia. < 5µm) powders resulted in the most ideal spatial distribution of nano-metric oxide dispersoids (dia. < 10 nm).

- This solidification dependence suggests the need to modify the atomization processing parameters to dramatically increase the yield of ultra-fine powders, in order to achieve a more ideal ODS microstructure while maintaining this simplified processing scheme.

- Initial elevated temperature mechanical testing revealed that these simplified CR-alloys contained a Y.S. similar to MA-956, while maintaining a threefold increase in total ductility.
Acknowledgement

- This study was sponsored by the Department of Energy, Office of Fossil Energy (ARM program) through Ames Laboratory contract no. DE-AC02-07CH11358. The continued support of Bob Romanosky, Pat Rawls, Vito Cedro, and Richard Dunst is gratefully acknowledged.

- Thanks to the Materials Preparation Center at Ames Laboratory, a U.S. Department of Energy Laboratory, for providing the processing tools and expertise to make this study possible (Larry Jones, Lanny Lincoln, Arne Swanson, Hal Sailsbury, Ross Anderson, David Boeke, and Trevor Riedemann).

Disclaimer

- "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."