# 

# **Electrodeposited Mn-Co Alloy Coating for SOFC Interconnects**

H.A. McCrabb<sup>1</sup>, B. Kagajwala<sup>1</sup> T.D. Hall<sup>1</sup>, H. Zhang<sup>2</sup>, X. Liu<sup>2</sup>, S. Snyder<sup>1</sup> E.J. Taylor<sup>1</sup>

 <sup>1</sup>Faraday Technology, Inc. 315 Huls Dr., Clayton, OH 45315
<sup>2</sup>West Virginia University, Dept. of Mechanical Aerospace Eng. ESB, Morgantown, WV 26506

> 13<sup>th</sup> Annual SECA Workshop July 25, 2012

# Faraday Technology, Inc.

- Faraday Technology specializes in electrochemical engineering
  - www.faradaytechnology.com
- Faraday is a wholly-owned subsidiary of Physical Sciences, Inc. (Boston, MA)
  - www.psicorp.com

FARADAY -ጌ-ጌ-ጌ-ጌ TECHNOLOGY, INC.

- Collectively, the company staffs ~185 employees - ~100 with PhDs
- Annual revenue of ~ \$50M



# Faraday Technology, Inc.

Platform Technology: Pulse/Pulse Reverse Processing



**Core Competency**: Design and Engineer of Novel Electrochemical Hardware



Either may be applied independently to improve current industrial practices or may be combined for a total manufacturing solution

- Electronics
- Edge and Surface Finishing
- Engineered Coatings
- Battery and Fuel Cell Power
- Environmental Systems
- Corrosion and Monitoring Services

FARADAY ግሥጌግሥጌ TECHNOLOGY, INC.

- Enables uniform processing
- Applicable for additive or subtractive electrochemical processes
- Uniform processing is achieved over entire substrate, improving end product reliability

#### Achievements

- Continued optimization of FARADAYIC<sup>SM</sup> Electrodeposition Process parameters in order to optimize coating thickness, coating composition and coating adhesion
- Improved coating uniformity across T441 planar interconnects at the 100 cm<sup>2</sup> scale
- Demonstrated coating process for 25 cm<sup>2</sup> 430 stainless steel interconnect containing gas flow fields
- Continued refinement of economic analysis to assess economic viability of FARADAYIC<sup>SM</sup> Electrodeposition Process for high volume batch manufacturing

# FARADAYIC<sup>SM</sup> Processing

#### Conventional (DC) Electrodeposition

FARADAYIC<sup>SM</sup> Process



- Fast deposition rates
- Simple deposition equipment
- Non-line-of-sight deposition
- Industrially scalable



- Improved electric field control
  - Enhanced control of coating thickness uniformity
  - Enhanced control of alloy composition
- Improved coating of "hidden surfaces"

# **Coating Process**

- Surface pretreatment to remove oxide and enhance coating adhesion
- Electrodeposition to coat interconnects with Mn-Co alloy
  - Pulse and pulse reverse electric fields to control deposit properties
- Elevated thermal treatment to convert alloy to spinel

TECHNOLOGY, INC.



# **Phase I Hull Cell Experiments**

Enables investigation into the effect of various parameters on deposit properties during a single experiment

- Current density
- Temperature
- Electrolyte composition
- Additives







# Phase I Hull Cell Experiments

Electrolyte with NaC<sub>6</sub>H<sub>11</sub>O<sub>7</sub>



Electrolyte without NaC<sub>6</sub>H<sub>11</sub>O<sub>7</sub>



- Electrolyte without NaC<sub>6</sub>H<sub>11</sub>O<sub>7</sub> was selected for Phase I work on 5 cm x 5 cm T441 planar substrates because at reasonable current densities and metal ion concentrations results suggested
  - Potential for higher Mn content in coating
  - Less microcracking
  - Higher current efficiency
    - Faster coating deposition rates

# **Phase I Cr Diffusion and Coating Porosity**



**TECHNOLOGY, INC.** 

- Cross-sections of samples that underwent a soak treatment at 800 C for 500 hrs.
  - Coating thickness was as deposited
  - Indicates that the 3 micron layer has low Cr diffusion and the 10 micron coating has negligible Cr diffusion into coating
  - 3 micron coating appears more porous than 7 and 10 micron film

#### **Phase I Coating Crystal Structure**



13th Annual SECA Workshop Pittsburgh, PA, July 24-25, 2012

slide 12

# Phase I Effect of Thickness and Composition on Performance

The ASR is  $\leq 60 \text{ m}\Omega \text{ cm}^2$  in most cases regardless of compositions and thickness after 500 hrs. at 800 C



**ASR at 800 C** 

| $m\Omega \text{ cm}^2$ | 100 hr | 500 hr |  |
|------------------------|--------|--------|--|
| 3 μm 40% Co            | 35     | 49     |  |
| 7 μm 40% Co            | 62     | 32     |  |
| 10 μm 40% Co           | 22     | 36     |  |
| 3 μm 85% Co            | 31     | 20     |  |
| 7 μm 85% Co            | 59     | 54     |  |
| 10 μm 85% Co           | 37     | 22     |  |
| 3 μm 57% Co            | -      | 26     |  |
| 7 μm 57% Co            | _      | 12     |  |
| 10 µm 57% Co           | -      | 12     |  |

### Phase III Program Management Plan

|                | Milestones                                                   |                       |                     |  |  |  |  |
|----------------|--------------------------------------------------------------|-----------------------|---------------------|--|--|--|--|
| Fiscal<br>Year | Title                                                        | Planned<br>Completion | Percent<br>Complete |  |  |  |  |
| 2011           | 1. Design/modification of 10" x 10" electrodeposition cell   | May 2011              | 100%                |  |  |  |  |
| 2012           | 2. Long-term high temperature, thermal evaluation            | August 2012           | 70%                 |  |  |  |  |
| 2012           | 3. Process development for 4"x4" planar interconnects        | May 2012              | 100%                |  |  |  |  |
| 2012           | 4. Process development for 4"x4" pattern interconnects       | June 2012             | 10%                 |  |  |  |  |
| 2012           | 5. Long-term on-cell performance evaluation                  | August 2012           | 10%                 |  |  |  |  |
| 2012           | 6. Qualification/demonstration of IC in single cell test rig | September 2012        | 0%                  |  |  |  |  |

FARADAY -ጌ-ጌ-ጌ-TECHNOLOGY, INC.

### **Pilot Scale Electrodeposition Equipment**





Based upon Faraday's electrochemical cell design that facilitates uniform flow across the surface of a flat substrate (US patent #7,553,401)



### **Pilot Scale Experiments**

- After several tests, issues were noticed with coatings
  - Non-uniform current density on front and back of sample during plating
    - Poor chemical composition control
    - Coating thickness non-uniformity
  - Poor coating adhesion
- Anodes removed from system
  - Mn fouling

**TECHNOLOGY, INC.** 

- High surface resistivity
  - In the megaohm range after only a few tests
- Can be removed with 30% (v/v) sulfuric acid



# NaC<sub>6</sub>H<sub>11</sub>O<sub>7</sub> Electrolyte Revisited

- Addition of  $NaC_6H_{11}O_7$  to electrolyte
  - Observed benefits
    - Boric acid dissolves completely
    - Complexing metal ions prevents hydroxide formation
    - Improved buffer capacity
    - Anode fouling eliminated

- Improved coating adhesion in as-deposited state
- Coating deposition rate appears linear
- Maintain coating thickness upon spinel conversion





### Varying Coating Thickness

~ 10  $\mu$ m coating ~ 2  $\mu$ m Cr<sub>2</sub>O<sub>3</sub> ~  $21\mu m$  coating ~  $3\mu m Cr_2O_3$ 



~ 33 µm coating



5µm

SE1

1144

SE1



13th Annual SECA Workshop Pittsburgh, PA, July 24-25, 2012

slide 18

### Varying Cobalt Concentration



- Minor Cr diffusion
- Minor Fe diffusion

#### 

- Minor Cr diffusion
- Some Fe diffusion

- Negligible Cr diffusion
- Fairly significant Fe diffusion

13th Annual SECA Workshop Pittsburgh, PA, July 24-25, 2012

slide 19

#### 750 Hour Thermal Soak at 800 °C



**TECHNOLOGY, INC.** 

#### 750 Hour Thermal Soak at 800 °C

2 hr. thermal treatment in air atm prior to thermal soak



Oxygen Ka1, Manganese Ka1, Chromium Ka1, Iron Ka1, Cobalt Ka1

 2 hr. thermal treatment in H<sub>2</sub> atm prior to thermal soak



#### 750 Hour Thermal Soak Testing

#### The ASR is $\leq 20 \text{ m}\Omega \text{ cm}^2$ after 750 hrs. at 800 C

|                                 | Sample No. | Thickness (µm) | Atomic% |    | ASR (mΩ·cm <sup>2</sup> ) |
|---------------------------------|------------|----------------|---------|----|---------------------------|
|                                 |            |                | Со      | Mn |                           |
| H <sub>2</sub> atm exposure for | 1132       | 7.5            | 89      | 11 | 13.3                      |
| 2 hours followed by             | 1134       | 10             | 91      | 9  | 16.7                      |
| thermal soak for<br>750 h       | 1136       | 13             | 92      | 8  | 9.6                       |
| Air atm exposure                | 1133       | 12             | 85      | 15 | 13.0                      |
| for 2 hours followed            | 1135       | 11             | 85      | 15 | 19.5                      |
| by thermal soak for<br>750 h    | 1137       | 14             | 85      | 15 | 13.8                      |



13th Annual SECA Workshop Pittsburgh, PA, July 24-25, 2012

#### 750 Hour Thermal Soak







**TECHNOLOGY, INC.** 





#### **Process Scale-up from 25 cm<sup>2</sup> to 100 cm<sup>2</sup>**



#### **Process Scale-up from 25 cm<sup>2</sup> to 100 cm<sup>2</sup>**



# 25 cm<sup>2</sup> 430 Stainless Steel Interconnect With Gas Flow Fields



- 3 channel serpentine pattern
- Channel width ~ 0.9 mm
- Rib width  $\sim 0.8 \text{ mm}$
- Channel depth ~ 0.45 mm

FARADAY -ጌ-ጌ-ጌ-TECHNOLOGY, INC.



#### 25 cm<sup>2</sup> 430 SS Interconnect With Gas Flow Fields



#### 

#### 25 cm<sup>2</sup> 430 SS Interconnect With Gas Flow Fields



#### Future Work

- Complete thermal soak to 2000 hours for existing samples
- Development, optimization and validation of the FARADAYIC<sup>SM</sup> Electrodeposition Process for 100 cm<sup>2</sup> interconnects with gas flow field features
- Long-term on-cell performance evaluation of button cells
- Qualification/Demonstration of Interconnect Coating in Single Cell Test Rig under ideal SOFC operating conditions by potential commercial partners
- Continued development of a more comprehensive economic assessment of the electrodeposition coating process as it relates to interconnect manufacturing.

FARADAY ግሥጌግሥጌ TECHNOLOGY, INC.



### **Acknowledgments**

- Briggs White and the entire NETL SECA team
- This material is based upon work supported by the Department of Energy under Award Nos. DE-SC0001023 and DE-FE0006165. Any opinions, findings, conclusions and recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the DOE.
- Contact Information: Heather McCrabb Ph: 937-836-7749 Email: heathermccrabb@faradaytechnology.com

