High-Temperature Viscous Sealing Glasses for Solid Oxide Fuel Cells

DOE SBIR Phase II Contract # DE-SC0002491

Cheol-Woon (CW) Kim, Joe Szabo, Ray Crouch, and Rob Baird
MO-SCI Corporation, Rolla, MO; ckim@mo-sci.com

Richard K. Brow, Jen Hsien Hsu, and Casey Townsend
Department of Materials Science and Engineering and the Graduate Center for Materials Research
Missouri University of Science and Technology, Rolla, MO; brow@mst.edu

13th Annual SECA Workshop
Pittsburgh, PA, July 24-25, 2012
Sealing Glasses: SOFCs, Aerospace

Specialty Glasses for New Applications

RadSpheres Commercial Blood-Typing Cards DermaFuse
Why consider a viscous glass seal for an SOFC?

- Potential for *lower thermal stresses* through viscous relaxation at operational temperatures
 - Less critical that seal has CTE match to dissimilar materials

- Potential for ‘re-sealing’ at operational temperatures through viscous flow
Objectives

➢ Develop glass compositions that exhibit stable thermomechanical/thermochemical properties, including viscosity, for use as seals for SOFCs

 Requisite Thermal and Physical Properties
 a) Long-term stability in viscosity (650-850°C)
 b) T_g: < 650°C: thermal stress will be relieved
 b) T_{soft}: < 650°C: requisite flow for re-sealing behavior
 c) T_{Liq}: < 800°C (as low as possible): stable, a small volume fraction of crystals
 d) $CTE(RT-subT_g)$: 10-12.5 x 10^{-6}/°C (YSZ- SS441)

➢ Conduct hermetic sealing tests

 SOFC Materials
 a) Aluminized SS441
 b) NiO-YSZ supported YSZ electrolyte bilayers
 Supplied by PNNL

➢ Characterize thermochemical reactions

 a) Volatilization of glass components
 b) Interfacial reactions with SOFC components
Promising compositions were identified

➢ To date, prepared a total of >90 compositions (including Phase I) and measured properties (T_g, T_s, T_{Liq}, and CTE) of all of the compositions

➢ Preferred Compositions Exhibit Promising Sealing Behavior

<table>
<thead>
<tr>
<th></th>
<th>Glass 2</th>
<th>Glass 4</th>
<th>Glass 28</th>
<th>Glass 73</th>
<th>Glass 75</th>
<th>Glass 77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass system</td>
<td>BaO-B$_2$O$_3$-SiO$_2$</td>
<td>BaO-RO-Al$_2$O$_3$-B$_2$O$_3$</td>
<td>BaO-RO-Al$_2$O$_3$-B$_2$O$_3$-SiO$_2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_g (°C) measured from CTE curve</td>
<td>619</td>
<td>599</td>
<td>581</td>
<td>624</td>
<td>623</td>
<td>625</td>
</tr>
<tr>
<td>Dilatometric T_s (°C)</td>
<td>650</td>
<td>632</td>
<td>615</td>
<td>640</td>
<td>650</td>
<td>656</td>
</tr>
<tr>
<td>CTE 40-500°C (/°C)</td>
<td>8.19x10^{-6}</td>
<td>7.32x10^{-6}</td>
<td>7.48x10^{-6}</td>
<td>8.48x10^{-6}</td>
<td>8.17x10^{-6}</td>
<td>9.25x10^{-6}</td>
</tr>
<tr>
<td>Liquidus T (°C)</td>
<td>805</td>
<td>790</td>
<td>795</td>
<td>800</td>
<td>810</td>
<td>810</td>
</tr>
</tbody>
</table>
DSC Analysis

- Differential Scanning Calorimetry (DSC) Reveals That The Candidate Sealing Glasses Do Not Readily Crystallize
 - No Crystallization Peaks Up to 1000°C
 - Similar results were found for other candidate compositions
Liquidus Temperature

- Liquidus Temperature (ASTM C829-81), 72 hours in a gradient furnace

- Glass 73: Clear Glass
 - Liquidus Temperature: 800±10°C

- Slightly Cloudy Glass

- Glass 75: 810±10°C

- Glass 77: Liquidus Temperature as low as possible
 - Liquidus Temperature: 810±10°C

Liquidus Temperature as low as possible
Stable Viscosity

Viscosity measurements provide valuable performance information

- High temperature measurements (1-10⁴ Pa-s) by the rotating spindle technique
- Low temperature measurements (10⁵-10¹¹ Pa-s) by the parallel plate technique
- Viscosity-temperature curves fit using the Corning viscosity model (JC Mauro, PNAS, 2009)

Long-term viscosity measurements in progress

<table>
<thead>
<tr>
<th>Glass</th>
<th>Fitting Parameters</th>
<th>(T_g) (°C)</th>
<th>Isokom (T(°C), \log(\eta)) (Pa·s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(m)</td>
<td>(T_g) (°C)</td>
<td>Dilatometric</td>
</tr>
<tr>
<td>Glass 73 as-cast</td>
<td>48.46</td>
<td>610</td>
<td>624</td>
</tr>
<tr>
<td>Glass 73 500hr at 800°C in air</td>
<td>39.54</td>
<td>598</td>
<td>Not Measured</td>
</tr>
</tbody>
</table>
Flowing Wet Forming Gas (5%H₂ 95%N₂)

Glass 73 Weight Loss at 750°C in Flowing Wet Forming Gas

Stagnant Dry Air

Glass 73 Weight Loss at 750°C in Stagnant Dry Air

Weight Loss estimated for 40,000 hrs

<table>
<thead>
<tr>
<th>Test Condition at 750°C</th>
<th>Volatility Rate (g/mm²/hr)</th>
<th>Total Weight Loss (%) at 40,000 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowing wet forming gas</td>
<td>2.0×10⁻⁸</td>
<td>4.5</td>
</tr>
<tr>
<td>Stagnant dry air</td>
<td>1.7×10⁻⁸</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Hermetic Sealing Tests

Schematic seal performance test system

Sandwich sample:

- Glass pastes were made from powders (-45 µm) mixed with a solution of PVB binder and acetone, and used to bond NiO/YSZ bi-layer to aluminized steel (SS441) substrate (materials from PNNL)

- Sandwich seals fired in air at 850°C for 8 hours
Glass 73 seal has survived 100 thermal cycles (750°C to RT) in dry air at a differential pressure of 0.5 psi (26 torr) over the course of > 3,300 hours without failure and the test was deliberately terminated for analysis.
To date, Glass 73 seal has survived **81 thermal cycles (750°C to RT)** under **wet forming gas** at a differential pressure of 0.5 psi (26 torr) over the course of **> 2,800 hours** without failure and the test continues.
Re-Sealing Tests

- Tried to break a seal by fast cooling as possible in the furnace, but no seal failure
- Glass 73-Coupon A: No seal failure up to 15 psi, 850°C

![Graph showing temperature and ΔP increments for Glass #73 Coupon A]

- ΔP increased in 0.5 PSI increments until 12.5 PSI held for 0.5 hours. No seal failure.
- ΔP increased in 0.5 PSI increments until 7 PSI held for 0.5 hours. No seal failure.
- ΔP increased in 0.5 PSI increments until 6 PSI held for 2.5 hours. No seal failure.
- ΔP increased in 0.5 PSI increments until 6 PSI held for 3 hours. No seal failure.
- Cycling from 800°C to RT
- Constant T of 800°C
- Constant T of 850°C
- Constant ΔP of 0.5 PSI while cycling from 800°C to RT
Glass 73-Coupon B: No seal failure up to 15 psi, 850°C

- ΔP increased in 0.5 PSI increments from 3.5 PSI to 7.5 PSI. No seal failure.
- ΔP increased in 0.5 PSI increments from 8.0 PSI to 13.5 PSI. No seal failure.
- ΔP increased in 0.5 PSI increments from 13.5 PSI to 14.5 PSI. No seal failure.
- ΔP increased in 0.5 PSI increments from 14.5 PSI to 15.0 PSI. No seal failure.
- ΔP of 15 PSI held for 5.5 hours. No seal failure. Test terminated.

Cycling from 800°C to RT

Constant T of 850°C
Glass 73-Coupon C: Thermally cracked and healed

- Seal originally found to be hermetic
- Glass seal deliberately cracked by high cooling rate quench (> 25°C/s)
- Crack healed after re-heating to 725°C for 2 hrs

Foaming in soapy water
No foaming in soapy water
Re-Sealing Tests-cont. (ex-situ)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Time (hr)</th>
<th>Observation</th>
<th>Viscosity log(η) (Pa·s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>2</td>
<td>Healed</td>
<td>3.4</td>
</tr>
<tr>
<td>750</td>
<td>2</td>
<td>Healed</td>
<td>5</td>
</tr>
<tr>
<td>725</td>
<td>2</td>
<td>Healed</td>
<td>5.7</td>
</tr>
<tr>
<td>700</td>
<td>2</td>
<td>Healed once, but not healed second time; more tests in progress at 700°C or below</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Glass Fitting Parameters

<table>
<thead>
<tr>
<th>Glass</th>
<th>Fitting Parameters</th>
<th>T<sub>g</sub> (°C)</th>
<th>Isokom T(°C), log(η) (Pa·s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass 73</td>
<td>m T<sub>g</sub></td>
<td>Dilatometric</td>
<td>11 9 6.6 4 2</td>
</tr>
<tr>
<td>as-cast</td>
<td>48.46 610</td>
<td>624</td>
<td>623 655 705 785 886</td>
</tr>
</tbody>
</table>

Possible Healing as low as 700-725°C
Reactivity Characterization
Glass 73

800°C for 168 hours in air

- Excellent wetting and bonding to both aluminized metal and YSZ
- Some interfacial reactions between glass and metal, long-term characterization will be required
- No major interfacial reactions between glass and ceramic substrate
- No major Cr or Fe migration to glass seal
- Some Al migration to the interface of glass seal
- No elemental migration to glass seal or to ceramic substrate
Long-Term Reactivity Characterization

- Glass 73 reaction couple: 100 Thermal cycles (750°C to RT) > 3,300 hours, dry air
- More analysis in progress

Bubble: a few large bubbles
Crack
Al- or Si-rich phase(s)
On-going & Planned Work

- Refine and optimize glass compositions
- Study long-term viscous behavior
- Characterize long-term thermochemical reactions
- Hermeticity and ‘re-sealing’ behavior
- Characterize porosity
- Stack tests (PNNL)
Acknowledgements

- SECA
- DOE SBIR Phase II Contract # DE-SC0002491
- DOE Project Officer: Joseph Stoffa, NETL
- Yeong-Shyung Matt Chou/Jeff Stevenson, PNNL