Engineering Innovations and Degradation Modeling in SOFC Cathodes

Kirk Gerdes
DOE-NETL, Research Group Leader – Fuel Cells
Outline

• NETL-RUA
 – Description
 – Engagement

• Cathode Engineering
 – Infiltration
 – Microstructural Engineering

• Cathode Degradation
 – Degradation framework
 – Constitutive (ORR, Microstructure, ab initio)
 – Core (3D multi-physics, Cathode evolution)
 – Additive (Aging effects, Secondary phases / breakdown)

• Summary
NETL RUA

• NETL-RUA
 – Description
 – Engagement

• Cathode Engineering
 – Infiltration
 – Microstructural Engineering

• Cathode Degradation
 – Degradation framework
 – Constitutive (ORR, Microstructure, \textit{ab initio})
 – Core (3D multi-physics, Cathode evolution)
 – Additive (Aging effects, Secondary phases / breakdown)

• Summary
Support Industrial Development

Operation of NETL Solid Oxide Fuel Cell Multi-Cell Array on direct, coal-derived synthesis gas at the National Carbon Capture Center at Wilsonville, AL in August/Sept 2009.

Collected 4,000 + cell-hours of data to support development of gas cleanup systems sufficient for gasifier / fuel cell integration.

Evaluate Advanced Concepts

Fundamental computations (3D multiphysics model, at left) inform modeling of advanced degradation, performance, and microstructural evolution at the cell and stack level.

Integrated gasifier / fuel cell / turbine systems (IGFT, at right) support advanced fuel cell demonstrations efforts (2013+). NETL operates a system hardware evaluation and controls development platform.

Innovate Technology

Cathode infiltration technology is being developed to enhance the SOFC operating performance. Initial results have demonstrated > 40% performance improvement and acceptable material stability.
Cathode Engineering

- **NETL-RUA**
 - Description
 - Engagement

- **Cathode Engineering**
 - Infiltration
 - Microstructural Engineering

- **Cathode Degradation**
 - Degradation framework
 - Constitutive (ORR, Microstructure, *ab initio*)
 - Core (3D multi-physics, Cathode evolution)
 - Additive (Aging effects, Secondary phases / breakdown)

- **Summary**
Infiltration concept

Cathode infiltrates
- Nano-scale electrocatalysts
- High-surface area (EISA)

Long-term stability verification
> Variation of R_o and R_p of selected baseline cell and infiltrated cell for 1,500 h

Short-term performance validation
Demonstrated statistically significant performance improvement for infiltrated cathodes in 200 hour tests
> 30% peak power density increase (average) observed

Industry Engagement
Unaltered industry cells + unmodified infiltrate: 200 hour tests
> 38% power density increase @ 0.7 V (average)

Verified stability of electrochemical performance in 1500 hour test, cell degradation not accelerated above baseline
Electrocatalytic Infiltration

- Focus on $\text{La}_{0.6}\text{Sr}_{0.4}\text{CoO}_3-\delta$
- Activity enhancement
 > 30% power output @ 0.7 V
- Stability
 No phase breakdown or interphase reaction
- Durability
 Equal or better than baseline @1500 hours
- Cost / Scalability
 Requires 6 wt% infiltrate (or less)
 Formula compatible w/ commercial cathode structures/materials
Cathode Infiltration

- Improved infiltration process to minimize total number of infiltration steps
- Developed EISA process to increase infiltrate surface area (mesopores) and enhance thermal stability
- Evidence for role of structural relationships between infiltrate and backbone
 - LSM infiltrated by LSM (top)
 - LSCF infiltrated by two morphologies of LSM (bottom)

Images and data: Shiwoo Lee, National Energy Technology Laboratory
Paul Salvador & Robin Chao, Carnegie Mellon University
Cathode Infiltration

- **Prior accomplishments**
 - Developed and demonstrated a functional infiltrate (LSC)

- **Recent progress**
 - Generated evidence of structure-dependent performance enhancements
 - Examined the role of infiltrate wetting in fabrication and infiltrate function

- **Continued research**
 - Examination of stability and improvements from infiltrates composed of doped and/or non-standard materials

Infiltration Publications

In-situ Foamed Cathode

- **In-situ foaming process**
 - One-step, functionally graded cathode microstructure
 - Enhanced receptiveness to infiltration

- **Electrolyte supported system development** → anode supported

- **Optimized formula decreases cathode polarization by > 50% over traditional microstructure**
FY12-FY13 Cathode Engineering

• NETL RUA
 – Increased engagements with SECA core
 • Argonne National Laboratory - initiated
 • Georgia Institute of Technology – executing
 • Additional partners arising from FY13 starts

 – Increased engagements with industrial teams
 • Primary demonstrations on unmodified MSRI button cells
 • FY12 demonstration with SECA industrial partner cell

 – Finalize cathode and extend effort to include anode
 • Anode – catalytic enhancement, chemical resistance, durability
Cathode Materials Testing

- MCA Video
Cathode/Electrode Engineering Beyond FY13

- **FY12**: Foundational Materials Development (Cathode Infiltration and Microstructural Engineering)
- **FY13**: Demonstration on Commercially Relevant Cell System (Cathode)
- **FY14**: Development of Anode Infiltrates and Initial Cathode Technology Transfer to Industry
- **FY15**: Co-Development of Industrial Processes, Infiltration / Microstructure, and Complete Technology Transfer / Industrial Adoption (Cathode & Anode)
Cathode Degradation

- **NETL-RUA**
 - Description
 - Engagement

- **Cathode Engineering**
 - Infiltration
 - Microstructural Engineering

- **Cathode Degradation**
 - Degradation framework
 - Constitutive (ORR, Microstructure, *ab initio*)
 - Core (3D multi-physics, Cathode evolution)
 - Additive (Aging effects, Secondary phases / breakdown)

- **Summary**
Degradation framework

• Degradation
 – Topic too vast to cover in industrial report (as collection of relevant observations or description of applied heuristic approaches)
 – Too many combinations of materials, too many operating states

• Framework organization
 – Attempt to generalize/categorize degradation
 – Provide a simple framework based on *degradation source* and *mechanistic complexity*
 – *Intrinsic* v. *extrinsic*; and *primary* v. *secondary*

<table>
<thead>
<tr>
<th></th>
<th>Intrinsic</th>
<th>Extrinsic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary (direct or single step)</td>
<td>Best Engineering Practices</td>
<td>i) Best Engineering Practices</td>
</tr>
</tbody>
</table>
• *Integrated modeling and experimental* efforts to quantify degradation
• Model validation – ongoing validation using literature and direct experimental sources

3D multi-physics (Celik – WVU)

3D reconstructions (Salvador – CMU)

ORR model (Liu – WVU; Gemmen – NETL)

ab intio model (Mantz – NETL)

Constitutive

FY10-FY12

Integrated, Domain scale

FY11-FY12

Additive

FY11-FY12

700°C

800°C

Aging

(Finklea – WVU; Abernathy – NETL)

Phase breakdown

(X Song – WVU)

Secondary phases

(X Song – WVU; Gerdes/Hackett – NETL)
Constitutive Models and Reconstructions

- **Oxygen Reduction Reaction (ORR)**
 - Treats parallel pathway (2PB v. 3PB)
 - Assumes surface potential separation

- **ab initio simulations** – LSZ → LSM

- **FIB-SEM reconstructions, FIB-OIM**

M.Gong, R. Gemmen, X. Liu, “Modeling of oxygen reduction mechanism for 3PB and 2PB pathways at solid oxide fuel cell cathode from multi-step charge transfer” *Journal of Power Sources* 201 (2012) 204–218

Integrated, domain scale models

- **3D multi-physics model (space domain, 10’s cm)**
 - Powerful dynamic model predicts full 3D multi-physics (e.g. T, species, η, impedance response)
 - Informed by ORR and full 3D reconstructions
 - Validated by parametric analysis and comparison to independently published data

[Image of a 3D model with color legend showing temperature variations]

- **Microstructural evolution model (time domain, 1000’s hrs)**
 - Describes evolution of 3-phase microstructure subject to thermodynamic and kinetic drivers
 - Predicts geometric and topological parameters relevant to fuel cell reaction and transport

[Graph showing TPB fraction over time steps]

Additive degradation phenomena

- **Cathode – Aging**
 - \(R_p \) of LSM symmetric cell held at OCV and cycled between 700°C and 800°C changes between two steady states requiring 10’s hrs to acquire
 - Believed attributable to cation diffusion

 H. Abernathy, H.O. Finklea, D.S. Mebane, X. Chen, K. Gerdes, M.D. Salazar-Villalpando, “Reversible aging behavior of \(\text{La}_{0.8}\text{Sr}_{0.2}\text{MnO}_3 \) electrodes at open circuit” *Journal of Power Sources* 216 (2012) p11-14

- **Anode - Direct syngas exposure**
 - Direct syngas produces only minor secondary phases
 - Degradation of seal and mechanical obstruction of pores

- **Electrolyte - YSZ attack by phosphine**
 - Stable Y-P-O phase is generated at electrolyte in \(\text{PH}_3^- \)-exposed anode

FY12-FY13 Degradation Modeling

• NETL RUA
 – Increased engagements with SECA core
 • Argonne National Laboratory - initiated
 • Boston University - discussions
 • Additional partners arising from FY13 starts
 – Initiate engagements with SECA industry teams
 • Information sharing and stack analysis
 – Continue cathode and extend effort to include anode
 • Principal modes of degradation must be considered
Degradation Modeling Beyond FY13

- Foundational Operation and Evolution Modeling (Anode / Electrolyte / Cathode)
- Quantitative Analysis of Specific Degradation Modes (Anode / Electrolyte / Cathode)
- Quantitative Evaluation of Model Uncertainty Statistical Approach
- Integrated Predictions of Performance and Degradation (Long-term (40 khr +) Creation of industry accessible modeling tool)
- Real-time Performance Tracking and Forecasting Industry tool

- FY12
- FY13
- FY14
- FY15
Cathode Degradation

• NETL-RUA
 – Description
 – Engagement

• Cathode Engineering
 – Infiltration
 – Microstructural Engineering

• Cathode Degradation
 – Degradation framework
 – Constitutive (ORR, Microstructure, \textit{ab initio})
 – Core (3D multi-physics, Cathode evolution)
 – Additive (Aging effects, Secondary phases / breakdown)

• Summary
Summary

• NETL RUA has developed significant expertise and demonstrated maturity in two principal areas
 – Materials development, infiltration, and testing
 – Cell degradation modeling and testing

• NETL RUA supports industrial development
 – Direct R&D engagements with SECA industry teams
 – Analytical support and diagnostics

• NETL RUA collaborates with SECA core
 – Intensification of depth of understanding
 – Facilitate transfer of fundamental knowledge to applied cell development
Questions

- **DISCLAIMER:** Part of this report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.