

Synchrotron X-Ray Studies of SOFC Cathodes

Paul Fuoss, Edith Perret, Hoydoo You, Kee-Chul Chang, Pete Baldo, Mitch Hopper, Jeff Eastman and Matt Highland Materials Science Division, Argonne National Laboratory

Brian Ingram

Chemical Sciences and Engineering Division, Argonne National Laboratory

Thanks to Briggs White and Paul Salvador for their thoughtful comments.

This research was supported by the U.S. Department of Energy, Solid-State Energy Conversion Alliance.

Overview

- Motivation and Background
- Current Results
 - Segregation
 - Lattice parameter vs. electrochemical state
- Summary

X-Ray Characterization

Overview of Synchrotron X-Ray Program

Bulk structure and properties (e.g. thermal expansion)

Literature

Interface structure at operating temperatures in typical atmospheres

Progress

Chemical state of atoms in cathodes under operating conditions

Progress

Dynamic response of cathodes under electrochemical loading

Latest Results

High performance SOFC Cathodes

Overview

- Motivation and Background
- Current Results
 - Segregation
 - Lattice parameter vs. electrochemical state
- Summary

LSM on DyScO₃

- Observe that strontium segregation depends on both T and pO₂
- Charged vacancies are often not considered in surface segregation studies.
 - The concentration of these defects depends strongly on temperature and pO₂.
- A gradient of V_o•• near the surface could drive Sr segregation.

Applied Physics Letters 93, 151904 (2008)

Change in Sr concentration from bulk

	Operating T (700-1000 C)	Low T (300 C)
Low pO ₂ (mTorr)	+35%	+50%
Operating pO ₂ (atmospheric)	+21%	+25%

Kinetic limitations

Equilibrium segregation:

$$\frac{x_{Sr}^s}{x_{La}^s} = \frac{x_{Sr}^b}{x_{La}^b} e^{-\Delta H_{seg}/kT}$$

■ Linearity at high T (above 500°C) indicates equilibrium segregation.

- → Previous room-temperature measurements likely depended on thermal history
- → Further details: T.T. Fister et al. APL, 93, 151904 (2008).

La_{0.7}Sr_{0.3}MnO₃ on YSZ

- Reduced segregation compared with LSM/DSO
- Grain boundary segregation may limit surface concentration
- pO₂-dependence is opposite

Do more oxygen vacancies in YSZ increase Sr segregation at the YSZ interface?

La_{0.7}Sr_{0.3}MnO₃ on YSZ: Orientation Dependence

Segregation is observed for both orientations but is not significantly stronger for (110) surface.

LSC Behaves Differently Than LSM

- LSM: surface oxygen vacancies
 - pO₂-dependent strontium surface segregation
- $La_{0.6}Sr_{0.4}CoO_3$ (LSC) & $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ (LSCF) : bulk oxygen vacancies
 - Surface strontium enrichment, but no pO₂ dependence

LSC Behaves Differently Than LSM

- LSM: surface oxygen vacancies
 - pO₂-dependent strontium surface segregation
- $La_{0.6}Sr_{0.4}CoO_3$ (LSC) & $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ (LSCF) : bulk oxygen vacancies
 - Surface strontium enrichment, but no pO₂ dependence

Electronic Conductor (LSM)

Mixed Conductor (LSC, LSCF)

Summary of Strontium Segregation

- For nearly all samples, strontium surface segregation is observed.
- The strontium segregation:
 - → Is approximately independent of strain state (i.e., substrate) and film-thickness
 - → Depends on pO₂ for LSM but not for LSC and LSCF
 - Behavior may dependent on mobility of oxygen vacancies
 - → Depends on temperature and crystal orientation.

Overview

- Motivation and Background
- Current Results
 - Segregation
 - Lattice parameter vs. electrochemical state
- Summary

Effect of oxygen stoichiometry on lattice parameter

- Volume expansion of LSCF lattice is linearly proportional to deviation from ideal stoichiometry
- Literature curve is for bulk samples expanding in all three dimensions (have to account for one-dimensional expansion of our constrained films)
- Estimate that 1 V cathodic potential at 600° and $pO_2 = 150$ Torr gives rise to approximately $\Delta d = 0.05$ (initial d was not determined)
 - corresponds to ~1 new oxygen vacancy per 20 unit cells

plot from S.R. Bishop, K.L. Duncan, E.D. Wachsman, J. Am. Ceram. Soc. 93 (2010) 4115-4121.

Experiment

- ~20 nm thickness LSCF and Gd₂O₃-doped CeO₂ (GDC) layers by PLD on (001) YSZ; GDC prevents reactions between LSCF and YSZ
- Examined effects of applied DC potential, pO₂, and T
- Monitored changes in both current (conduction) and outof-plane lattice parameter (of all three materials)
- Investigating ionic component of LSCF conductivity (YSZ blocks electronic component)

~20 µm wide incident X-ray beam

Expected behavior

- Applying a cathodic (anodic) potential drives oxygen into (out of) the LSCF film at the LSCF/gas interface
- Also drives oxygen into (out of) the GDC film at the LSCF/GDC interface
- If barriers to oxygen vacancy transport across these two interfaces are equal, expect no change in lattice parameter or conduction when field is applied
- If changes in lattice parameter and conduction <u>are</u> observed, we can determine which interface is rate limiting

LSCF lattice parameter shift vs applied potential

- Oxygen transport across the LSCF/gas interface is rate-limiting under both anodic and cathodic conditions
- lacktriangle Cathodic potentials result in larger Δd than anodic potentials
 - larger barrier to oxygen reduction at the LSCF/GDC interface under cathodic conditions than to reverse reaction under anodic conditions
- Stoichiometry changes increase with decreasing pO₂
 - O₂ reduction barrier increases with decreasing pO₂

Time Dependence of Electrochemical Response

Time Dependence of Electrochemical Response

C-Lattice Shifts versus Voltage and Temperature

Explanation: LSCF phase change from rhombohedral to cubic between 400-550°C

Solid State Ionics 159 (2003) 71–78 Applied Catalysis B: Environmental 103 (2011) 318–325

Comparing Current and Lattice Relaxation

Current averages over the entire sample.

X-rays sample a very small area responds more quickly.

Effect of pO₂ on Lattice Relaxation

Not surprisingly, the lattice responds more quickly at higher oxygen partial pressures.

Activation Energy for Oxygen Exchange

Electrochemical variation due to current collector geometry and morphology

- Current collector geometry is critical
 - Macroscopic area is not linearly related to impedance
- Current collectors affect electrical property measurements (active area)
- Inconsistency in "painting" Pt-paste
 - Area coverage
 - Contact area with film
- Sputtered Pt de-wets film surfaces
 - Contact is lost as Pt loses continuity

- sputtered Pt working electrode
- Pt paste counter electrode

Screen-Printing of SOFC Materials

Screen-printed electrodes provide enhanced performance

- Total thickness variation < 10%</p>
- Accurate lateral positioning and sizing
- Electrically continuous "wires"
- Complex geometries are possible
- High process control and repeatability

- Buried Pt electrodes / porous LSCF
- Stable microstructure after anneal

Impact of Sr Segregation on Oxygen Exchange

- Slow increase in Sr segregation during annealing at ~620°C in air
- Lattice expansion is higher and shows more hysteresis on the Sr segregated surface
- IV curve shows only small difference between the initial and Sr segregated surface

Summary

- In-situ x-ray techniques provide opportunity to understand relationships between film / interface structure and electrical behavior
- Application of DC fields across LSCF/GDC/YSZ heterostructures results in rapid (< 1 sec) changes in LSCF (but not GDC or YSZ) out-of-plane lattice parameters
 - Indicates that oxidation / reduction reactions at the LSCF / gas interface are rate-limiting
- The activation energy is in the order of 1.1eV for the currents and c-lattice parameter shifts.
- The tau values extracted from the current are larger than the ones from the c-shift for high pO₂ and high T.

The End

