

COAL-BASED IGFC PROJECT PHASE I

FC26-08NT0003894

Praveen Narasimhamurthy – UTC Power Rick Kerr – Delphi

OUTLINE

- Summary of stack performance highlights from past year
- Cell and stack fabrication
- Gen 4 stack seal development
- Gen 4 stack voltage variation improvement
- Interconnect and contact material development
 - Constant current
 - Thermal cycling

SUMMARY OF SECA COAL BASED SYSTEM STACK DEVELOPMENT

- Completed scale up of cells from 105 cm² (active area) cells to 403 cm² for Gen 4 stacks
- Added additional Gen 4 stack fabrication and testing capabilities
- Fabricated and tested 24 Gen 4 stacks and 55 Gen 3 stacks in past year
- Completed Red X[®] investigations to improve stack sintering process and decrease stack voltage variation
- Demonstrated 7,000+ hours continuous durability on Gen 3.2 stack; demonstrated 5,000+ hours on Gen 4 stack.
- Completed 70 full thermal cycles on Gen 4 stack, with less than 5% voltage degradation

CELL AND STACK FABRICATION

- Fabricated in past year
 - About 2,200 Gen 4-sized cells
 - 24 Gen 4 stacks of varied configurations (most 30cells or greater)
 - 55 Gen 3 stacks of varied configurations (many 30cells or greater)

GEN 4 STACK SEAL DEVELOPMENT PROJECT

CONCENTRATION DIAGRAMS OF POROUS SEAL MICROSTRUCTURES

STACK SINTERING OPTIMIZATION PROJECT

- Confirmed overheating of the stack seals
 - PNNL XRD analyses
 - Microstructural analysis
 - Coupon confirmation testing at increased sintering temperatures
- Teardown analyses of previous stacks
- Thermal mapped build stands and stacks during standard build process
- Developed strategy for investigating build control factors for improved thermal control during sintering
- Completed stack mapping thermal profiles with varied build controls
- Confirmation run with new build control parameters

TEMPERATURE PROFILES PRIOR TO OPTIMIZATION OF SINTERING CYCLE

TEMPERATURE PROFILES AFTER OPTIMIZATION OF SINTERING CYCLE

SEAL STRUCTURAL IMPROVEMENT FROM SINTERING OPTIMIZATION

Stack Perimeter Seal Prior to Optimization of Sintering Cycle

Stack Perimeter Seal After Optimization of Sintering Cycle

INITIAL GEN 4, 30-CELL STACK PERFORMANCE USING OPTIMIZED SINTERING PROFILE

RED X® STUDY ON MINIMIZING STACK REPEATING UNIT VOLTAGE VARIATION

- Analyzed numerous Gen 4 stacks
 - Cross sections
 - Repeating unit teardowns
 - X-ray and metallographic analyses of repeating units
 - Measurement studies of numerous repeating unit components
 - Optical and SEM inspection of components
- Conducted sintering studies
 - Component level
 - Full stack level

MOST RECENT 38-CELL GEN 4 STACK INITIAL POLARIZATION PERFORMANCE AFTER RED X® PROJECT

MOST RECENT 38-CELL GEN 4 STACK INITIAL POLARIZATION VOLTAGE SPREAD

MOST RECENT 38-CELL GEN 4 STACK INITIAL CONSTANT CURRENT PERFORMANCE (0.35 A/cm²)

GEN 3.2 STACK DURABILITY TESTING (0.57 A/cm²)

GENERATION 3 30-CELL STACK DURABILITY

30-CELL GEN 4 STACK THERMAL CYCLING

THERMAL CYCLING CATHODE CONTACT MATERIALS

30-CELL GEN 4 STACK CONSTANT CURRENT DURABILITY (0.27 A/cm²)

INTERCONNECT MATERIAL PERFORMANCE

UTC OBJECTIVES FOR PHASE II

- Design and build 15-25kW SOFC breadboard
- Make modifications to SOFC test stand from Phase I to test breadboard
- Perform extensive verification of test stand and breadboard on beater stack prior to start of endurance testing
- Demonstrate 1500 hours endurance on 4-stack module in a system construct (breadboard)
- Demonstrate thermally self-sustaining operation
- Demonstrate peak power operation

SUMMARY HIGHLIGHTS - SYSTEM

- Demonstrated ~1,250 hours durability on Gen 4 stack module.
- Improved test stand reliability by ~3x to complete Phase I
- Completed conceptual and preliminary design for the 25kW breadboard
- Detailed design and breadboard build is ~80% complete
- Test stand modifications for Phase II are ~80% complete
- Software design and bench verification is 90% complete
- Ex-situ verification of breadboard fuel recycle assembly is underway
 - Completed ~100 hours of continuous durability at operating temperatures on an ex-situ test rig

OVERVIEW – SOFC PRODUCT DEVELOPMENT ROADMAP

TASK 6.3 - STACK MODULE ENDURANCE TESTING

Stack Module

Delphi Stack Module in the 50 kW capable test stand at UTC Power

TASK 6.3 - STACK MODULE ENDURANCE TESTING

Phase I Stack Performance

TASK 6.3 - STACK MODULE ENDURANCE TESTING

Endurance Test – System Level Learning

- ☐ Completed fuel contaminant tests
- ☐ Completed cathode side chromium sampling
- ☐ Obtained data on stack manifold temperature distribution
 - Temperature data used to estimate stack heat loss for Phase II
- ☐ Obtained data on stack manifold pressure drop
 - Currently anode over cathode at stack exit; working with Delphi
- ☐ Improved test stand reliability

NPD Gated Process for System Design and Development

Conceptual Design Preliminary Design Detailed Design/Test √ Component Requirements • Component Tests √ Requirements Generation Generation Hardware ✓ Trade Studies √ Component Design Build/Integration ✓ Conceptual Models ✓ Controls Design • Test Plan Review ✓ System Matches ✓ FMFA/FA/HA Breadboard Checkouts ✓ Preliminary Physical Layout ✓ Detailed Physical Layout Endurance Test

Design Review

Design Review

Test Report

Breadboard Schematic

- Fuel recycle for maximizing efficiency
- HEXs for exhaust heat recovery
- Catalytic burner for exhaust management and heat up of cathode inlet air

Breadboard Projected Efficiency

Breadboard Projections vs. Ideal

- Several BOP (recycle blower) over-sized
- Heaters included for contingency on breadboard; not required for a product
- Air blower for cathode supply not optimized

Control Strategy

Test stand controller

 Controls breadboard startup sequence, transition to load, on-load operation and breadboard shutdown for product protection

Host PC & Data Acquisition

 GUI-based user interface for controlling test process, monitoring and data collection

Other Controllers

- 1. Safety Controller
 - Hard-wired controls for safety and personnel protection
- 2. Facility Controller
 - Provides safety shutoff for all reactant supply system
- After Burner Controller
 - Controls test stand afterburner
- 4. Heater controllers
 - Maintain test stand controller requested heater set point

Breadboard Layout

Breadboard Design

Fuel System Components

Air System Components

Risk Mitigation: Ex-situ Blower Tests

Test Rig for Blower Performance and Endurance Test

FUTURE WORK

Beyond Phase II

 Continue cost reduction of stack and power plant components

Breadboard

- Improve stack durability to meet SECA goals
- Demonstrate breadboard endurance
- Risk reduce for critical components: blowers, fuel processing components, catalytic burners
- Collect system level data for scaled-up power plant/prototype design in future phases

ACKNOWLEDGEMENTS

Thanks to Joe Stoffa, Briggs White, and Dan Driscoll of the DOE for their support and technical guidance