

Electrodeposition of SOFC Interconnect Coatings

¹H. McCrabb, ¹T.D. Hall, ¹J. Kell, ¹S. Snyder, ²H. Zhang, ²X. Liu, ¹E.J.Taylor

¹Faraday Technology, Inc. 315 Huls Dr., Clayton, OH 45315 ²West Virginia University, Dept. of Mechanical Aerospace Eng. ESB, Morgantown, WV 26506

> 12th Annual SECA Workshop July 26 – 28, 2011

Faraday Technology, Inc.

- Faraday Technology specializes in electrochemical engineering
 - www.faradaytechnology.com
- Faraday is a wholly-owned subsidiary of Physical Sciences, Inc. (Boston, MA)
 - www.psicorp.com
 - Collectively, the company staffs ~185 employees ~100 with PhDs
 - Annual revenue of ~ \$50M

J-4536

Faraday Embraces Open Innovation

- Faraday's R&D efforts augment client company R&D needs
- Open innovation leverages government R&D dollars to solve current industrial issues.
- Faraday's strong IP portfolio reinforces our open innovation position and provides a competitive advantage for strategic partners.

26 Issued Electrochemical Patents
25 Pending Electrochemical Patents

Investment Discovery Research Knowledge Innovation Dollars

Market Dollars

Faraday Technology, Inc.

Platform
Technology:
Pulse/Pulse
Reverse Processing

Core Competency:

Design and Engineer of Novel Electrochemical Hardware

Either may be applied independently to improve current industrial practices or may be combined for a total manufacturing solution

- Electronics
- Edge and Surface Finishing
- Engineered Coatings
- Battery and Fuel Cell Power
- Environmental Systems
- Corrosion and Monitoring Services

- Enables uniform processing
- Applicable for additive or subtractive electrochemical processes
- Uniform processing is achieved over entire substrate, improving end product reliability

Objective of Program

- Develop, optimize & validate an inexpensive manufacturing process for coating metallic SOFC interconnects with Co and Mn
 - Demonstrate the process's flexibility to 4"x4" and 10" x 10" single and dual-sided patterned interconnect substrates
 - Control coatings nanostructure and composition to prevent
 T441 exposure to O₂ and Cr diffusion to coating surface
 - Mitigate Cr diffusion by identifying diffusion mechanism via in-situ high temperature XRD and ex-situ XPS depth profiling
 - Develop a comprehensive economic assessment
 - Work closely with our the SOFC industry to enhance the commercialization plan for the program.

Program Summary

- FARADAYIC Process allows for non-line-of-sight deposition of a wide range of compositions and surface structures using a single plating bath
- Coatings prepared using the FARADAYIC Process have uniform surface composition and thickness on 2" x 2" flat panels
- Coatings exhibit adequate adhesion
- Initial ASR and crystallinity analysis showed that the as-deposited thickness/composition had little effect on performance after a 500 hr heat cycle
- 3µm thickness is capable of minimizing Cr diffusion for 500 hr testing
- Capability to coat dual-sided 1" buttons, 4" x 4", and up to 11" x 14" panels
- Based on batch manufacturing, the DOE's high volume target of 1,600,000 plates per annum at a cost of ~\$1.23 per 25 x 25 cm interconnect

Coating Process

- Surface pretreatment to remove oxide and enhance coating adhesion
- Electrodeposition to coat interconnects with Mn-Co alloy
 - Pulse and pulse reverse electric fields to control deposit properties
- Elevated thermal treatment to convert alloy to spinel

FARADAYIC Processing

Initial Coating Development

ASR prediction (40,000h, 0.0460 Ohm cm²)

J. Wu, et al., Electrochimica Acta 54 (2008) 793-800

Initial Coating Development

Cross section after ASR

Good adhesion with substrate

No Cr penetrate through the coatings

Significant Mn diffusion from substrate

Initial Coating Development

Interconnect on button cell test

With electrodeposited MnCo coating, cell performance degradation reduced

Objective of Phase I

- Demonstrate the technical and economic feasibility of MnCo electrodeposited on SOFC interconnect materials by answering the following questions:
 - 1. What range of coating percent compositions can the electrodeposition process deposit?
 - 2. Can the electrodeposition process deposit Mn-Co alloy coatings with a thickness range of 3 10 um?
 - 3. How well does the coating perform at varying alloy compositions and coating thickness?
 - 4. Is the electrodeposition process economically viable?

Laboratory Scale Electrodeposition Equipment

Flow cell for plating onto 2"x2" planar T441 substrates

Coating Uniformity

The electrodeposited coating exhibits a virtually uniform coating composition and thickness across the 2"x2" surface

Coating Porosity and Adhesion

Feroxyl Porosity Test Results (AMS 2460 3.4.4.2)

*Rockwell test with 1/16" steel ball used to quantify adhesion after spinel growth after 72 hr. at 800°C

Cr Ion Diffusion and Coating Porosity

- Cross-sections of samples that underwent a soak treatment at 800 C for 500 hrs
 - Coating thickness was as deposited
 - Indicates that a 3 micron layer is adequate to produce Cr complexing and minimize Cr diffusion due to minimal porosity

Coating Crystal Structure

Crystal Structure after 500 hrs at 800°C

Effect of Thickness and Composition on Performance

The ASR is $\leq 75 \text{ m}\Omega$ cm² regardless of compositions and thickness after 500 hrs at 800 C

ASR at 800 C

$m\Omega \text{ cm}^2$	100 hr	200 hr	500 hr
3 μm 40% Co	35	57	49
7 μm 40% Co	62	7	32
10 μm 40% Co	22	-	36
3 μm 85% Co	31	75	20
7 μm 85% Co	59	40	54
10 μm 85% Co	37	23	22
3 μm 57% Co	-	34	26
7 μm 57% Co	-	-	12
10 μm 57% Co	-	-	12

Phase II Program Milestones

Milestones						
Fiscal Year	Title	Planned Completion	Percent Complete			
2011	1. Design/modification of 10" x 10" electrodeposition cell	May 2011	100%			
2011	2. Long-term high temperature, thermal evaluation	September 2011	33%			
2011	3. Process development for 4"x4" planar interconnects	September 2011	15%			
2012	4. Process development for 4"x4" pattern interconnects	June 2012	0%			
2012	5. Long-term on-cell performance evaluation	August 2012	0%			
2012	6. Qualification/demonstration of IC in single cell test rig	September 2012	0%			

Extended Thermal Treatment Time Study

- Six samples were prepared using varying deposition parameters and placed into a tube furnace at 850 C.
 - 2 samples with higher Mn content
 and 4 with high Co content
 - Target alloy thickness of 5 um
- An air flow of at least 500 sccm flows through the furnace tube (to simulate air in SOFC systems)
- Samples examined after 750, 1500, and 2000 hr

ASR Test order:C(t=0); D(t=750 hrs); E(t=1500 hrs); F(t=2000 hrs); and A(t=2000 hrs) (for Rockwell Test)

Extended Thermal Treatment Time Study

Extended Thermal Treatment Time Study

Cross Section Results - 1001

Pilot Scale Electrodeposition Equipment

Based upon Faraday's electrochemical cell design that facilitates uniform flow across the surface of a flat substrate (US patent #7,553,401)

Initial Pilot Scale Experiments

FARADAYIC Electrodeposition parameters varied for experiments conducted in the newly modified FARADAYIC Electrodeposition Cell

mounted Title Dieter out position cen						
	Electrode Spacing	Electrolyte Flow				
Trial No	(inches)	(PSI)	Vibration	Oscillation		
2001	3	16	-	-		
2002	1.5	16	-	-		
2003	4.5	16	-	-		
2004	4.5	10	50	50		
2005	4.5	16	50	50		
2006	3	16	50	50		
2008	3	5	50	50		
2009	3	10	50	50		

Electrodeposition Cost Analysis

High volume manufacturing of 1,600,000 plates per annum at a cost of ~\$1.23 per 25 x 25 cm interconnect

Future Direction

- Determine plating parameters effect on chromium and oxygen diffusion
- Continue scale-up development for large area planar T441 substrates
- Begin scale-up development for large area pattern interconnects
 - Demonstrate coating uniformity and composition
- Testing in single cell and short stack SOFC systems

Acknowledgments

- Briggs White and the entire SECA program management team
- This material is based upon work supported by the Department of Energy under Award Nos. DE-SC0001023 and DE-FE0006165. Any opinions, findings, conclusions and recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the DOE.
- Contact Information:

Heather McCrabb

Ph: 937-836-7749

Email: heathermccrabb@faradaytechnology.com

Thank You!