Cathode R&D Introduction

Briggs M. White
Project Manager
National Energy Technology Laboratory
United States Department of Energy
SOFC Operating Conditions for Coal Plants

High system efficiency is a key target
- High performance required over wide design space
 - Temperature, cell potential, fuel utilization

Stack Operation Parameters

Temperature
- Upper limit - interconnect oxidation
- Lower limit - cathode activity (overpotential)
- Upstream integration - gasification & gas cleaning
- Downstream integration - heat recovery devices & CO₂ capture

Overpotential
- Apparent correlation w/ degradation
- Typically 100-200 mV
Cathode Performance - Status and Objectives

State-Of-The-Art
- Cathode voltage loss substantial
- Industry team progress
 - bulk materials identified
 - microstructures optimized
- Industry cathodes established
- Total degradation 1-2 %/1000 hrs

Technical Objectives
- Cathode overpotential reduction
- Overall degradation 0.2 %/1000 hrs

Benefits
- Higher power density = reduced capital cost ($ / kW)
- Higher power block efficiency = higher system efficiency (%)
 - Environmental impact (Coal contaminants, Carbon & H₂O / kW*hr)
- Minimize degradation = longer service lifetime (>40,000 hrs)

All benefit Cost Of Electricity ($ / MW*hr)
Cathode Catalyst Development

1. Correlate Properties/Performance
2. Generate Ideas

Theorists Determine Energy Structure

Collect Data

Optimize Catalyst Morphology

1. Infiltrate & Test Button Cells
2. Validate - SECA Stack Fixture
Cathode Catalyst Development Approach

1. Collect data
 • Generate a database
 • Chemical, crystallographic, and electronic structure data
 • Focused on common compositions: LSM, LSF, LSC, LSCF
 • Collect in-situ data relevant to SOFCs
 • At temperature, under overpotentials representing operating voltages of 0.7 V to 0.9 V, in air
 • Compare with industrial experience

2. Draw in-situ/ex-situ correlations
 • Enable ex-situ techniques (especially for electronic structure)
 • Improve sample throughput
 • Validate in-situ measurements
Key Correlations - Surface Characteristics and Performance Properties

Collecting Surface Characteristics Data
- MIT
- UNLV
- ANL
- CMU
- Georgia Tech
- MSU
- Boston
- NETL

Generating Performance Property Data
- MIT
- CMU
- Georgia Tech
- MSU
- Boston
- PNNL

Advancing Theory / Interpreting Data
- ANL
- Stanford
- NETL
Translating Understanding – model thin-films to infiltrated catalysts

Sample Complexity

Perfect Epitaxial Films
- Boston
- MIT
- ANL
- CMU
- MSU
- UNLV

Imperfect Epitaxial & Sputtered Films
- Boston
- MIT
- ANL
- CMU
- MSU
- UNLV
- Georgia Tech

Infiltrated Cell Testing Capability
- Georgia Tech
- NETL
- PNNL
Validation of Candidate Catalysts

Generate Idea

Optimize Catalyst Morphology

Validate SECA Stack Fixture

Infiltrate Button Cells

Confirm Coating Stability

Transfer to Industry

Graphics courtesy of LBNL, Georgia Tech, PNNL, and VPS.