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• Utility of thin layers
- Functioning SOFCs
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- Fuel cell collaboration

• Microstructure and oxygen exchange
- Orientation of relaxed layers
- Dislocations and strain
- Extended boundaries in polycrystalline layers
- Free surfaces 
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cathode impedance decreased from greater than 3V ! cm2 to less
than 0.5V ! cm2 upon application of a cathodic potential. The
results with LCF–YSZ electrodes also rule out the possibility that
Sr migration to the electrolyte interface might be responsible for
deactivation,[104] since no Sr was present in this electrode.

If the deactivation model we have presented is correct, there
are important implications. It is usually assumed that deactiva-
tion is associated with solid-state reactions. Approaches used to
avoid deactivation therefore generally involve inserting a barrier
layer to prevent contact between the perovskite and the electrolyte
layers. Deactivation by solid-state reaction with the YSZ
electrolyte undoubtedly occurs for some materials (e.g., LSCo
and YSZ) and the use of barrier layers does help stabilize the
performance. However, the strategy needs to be quite different for
stabilizing electrode performance when deactivation is due to
sintering of the perovskite. One could attempt to prevent the
formation of a dense layer (barrier layers may help achieve this if
the interfacial energies between the perovskite and the barrier
material prevent film formation) or to increase ionic conductivity
through the perovskite layer. In either case, the approach to
cathode development would be quite different from those
designed to avoid solid-state reactions.

3.3. LSCF–YSZ Electrodes

Sr-doped LaFe0.8Co0.2O3 (LSCF) can be considered a subset of
LSF. LSCF has better electronic conductivity than LSF and a
similar ionic conductivity.[104–106] It exhibits very good initial
performance as an SOFC cathode when a doped-ceria layer is
used to separate it from the YSZ.[107,108] It is also used in the
current collector of some fuel-cell designs.[109] Very recently, work
has appeared in which an LSCF cathode was formed by
infiltration into porous YSZ.[110] Chen et al. have reported that
an infiltrated LSCF–YSZ electrode had an impedance as low as
0.047V ! cm2 at 800 8C, comparable to the performance of
infiltrated LSCo–YSZ and LSF–YSZ electrodes.[27,45] Unfortu-
nately, the stability of infiltrated LSCF–YSZ electrodes was not
reported.

Given the instability of LSF–YSZ and LSCo–YSZ electrodes, it
seems likely that there will be stability issues with LSCF as well.
The major issue is whether or not the Co in the LSCF will remain
in the perovskite phase, so that La2Zr2O7 formation will be
prevented. A study of La0.8Sr0.2Mn0.8Co0.2O3 (LSCM) infiltration
into porous YSZ showed reasonable initial performance;
however, the LSCM–YSZ electrodes were found to exhibit
stability similar to that of LSCo–YSZ electrodes. Performance
declined dramatically, even at 700 8C.[97] Therefore, we suggest it
is likely that the LSCF electrodes will also undergo solid-state
reactions with YSZ. Clearly, the stability of the infiltrated LSCF
electrodes needs to be checked given the intriguing performance
that was achieved.

3.4. LSM–YSZ Electrodes

Some of the key properties of LSM have already been discussed
earlier in this review and have been reviewed extensively
elsewhere.[33] Under typical cathode conditions, LSM has an

electronic conductivity greater than 200 S cm"1 but has negligible
ionic conductivity. It undergoes a solid-state reaction with YSZ to
form La2Zr2O7 above 1 250 8C,[66] but LSM–YSZ mixtures are
stable at lower temperatures. Because LSM–YSZ composites are
the standard material for cells with YSZ electrolytes, there is a
very large body of work characterizing the performance of these
electrodes.

Much of the effort in improving LSM–YSZ electrodes has
centered on developing an optimal composite structure. For
example, Virkar and coworkers have developed mathematical
models to determine what that ideal structure should be.[55] As
discussed earlier and shown in Figure 3, it is common practice for
fuel-cell developers to engineer LSM–YSZ electrodes so that the
region near the electrolyte, the functional layer, has a different
microstructure from that of the region farther from the
electrolyte, the current-collection layer. Micrographs of the
functional and conduction layers show that the functional layer
tends to have smaller pores and less overall porosity. This reflects
the need to enhance the concentration of TPB sites. High
porosities are not required for high gas-phase transport rates in
thin layers. Infiltration procedures are ideal for preparing the
functional layer, but are not really needed for the current-
collection layer.

The performance of electrodes formed by infiltration of LSM is
very good and comparable to that of conventional LSM–YSZ
composites. For example, Armstrong and Virkar prepared
infiltrated LSM electrodes using nitrate-salt solutions and
achieved power densities as high as 1.2W cm"2 for a cell
operating in hydrogen at 800 8C.[78]

As with conventional LSM–YSZ composites, structure appears
to be critical. Sholklapper et al. reported a power density of
0.3W cm"2 at a temperature of only 650 8C for a cell prepared by
infiltrating a porous YSZ scaffold with LSM nanoparticles.[81] The
structure of these electrodes is shown in the SEMmicrographs in
Figure 10 and demonstrates that the YSZ scaffold is coated with
small LSM particles. The picture in Figure 10 is similar to that of

Figure 10. Cross-sectional SEM image showing the microstructure of a
LSM–YSZ cathode that was fabricated by infiltrating a porous YSZ scaffold
with LSM nanoparticles. Reproduced with permission from reference [81].
Copyright 2006 The Electrochemical Society.
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implies a change in the surface area of the LSF phase. If electrode
performance is limited by the rate of surface oxidation and the
surface area decreases, the performance would be expected to
decline proportionally. A smaller active surface area could also
explain the decrease in impedance with increasing current
density. In the Butler–Volmer picture of electrode reactions, rates
are expected to accelerate as one moves farther from equilibrium.
However, a plot of the cathode impedance did not show the
expected logarithmic dependence between current and over-
potential that would be expected for Butler–Volmer kinetics.[85]

Furthermore, while we cannot totally rule out this model, it seems
unlikely that the slope of the V–i relationship would remain
constant in going from anodic to cathodic polarization if the
surface kinetics were limiting.

An alternative picture for understanding deactivation of the
LSF–YSZ electrodes is shown schematically in Figure 8. Based on
the SEM results, the LSF deposits calcined at 850 8C exist as small
particles on the YSZ scaffold, separated by gaps that allow gas-

phase oxygen to diffuse to the YSZ interface. This is depicted in
Figure 8a, which is similar to the diagram in Figure 2b. When
these particles sinter, either over time at operating conditions or
following high-temperature calcination, the LSF forms a dense,
polycrystalline layer over the YSZ scaffold, as depicted in
Figure 8b. Because the ionic conductivity of LSF is much lower
than that of YSZ (8! 10"4 S cm"1 for LSF and 1.89! 10"2

S cm"1 for YSZ at 700 8C[20,101]), the transport of oxygen ions
through the LSF could be limiting. The coupling of oxygen-ion
transport up the YSZ ‘‘fingers’’ and through the LSF film would
then be responsible for the current-dependent impedances.

Data for cathode performance with infiltrated Ca- and Ba-
doped LaFeO3 (LCF and LBF)[101] provide additional support for
the picture in Figure 8. LCF and LBF have nearly the same
electronic conductivity as that of LSF, but their ionic conductiv-
ities are significantly lower. LCF, in particular, has an ionic
conductivity that is 50 times lower than that of LSF at 700 8C.
Following calcination at 850 8C, the initial performance of LCF–
YSZ and LBF–YSZ electrodes was indistinguishable from that
observed with LSF–YSZ electrodes. Assuming the morphology of
the electrodes is similar to that shown in Figure 8a, it is
reasonable that the ionic conductivity would not be critical in this
case.

Following calcination at 1 100 8C, SEM showed that LSF, LCF,
and LBF each tended to form a dense film over the YSZ, similar to
that pictured schematically in Figure 8b. Cathode performance
for each of the three composite cathodes also decreased
dramatically. Figure 9 shows impedance data at open circuit
and at 100mA cm"2 for three cells made with identical anodes
and electrolytes, but with infiltrated cathodes based on LSF, LBF,
or LCF.[101] The impedance at open circuit was much larger for
the electrodes based on LCFand LBF, as would be expected for the
model in Figure 8, given the significantly lower ionic
conductivities of the LCF and LBF. Similar to the findings with
LSF, the impedance of LCF–YSZ and LBF–YSZ cathodes
exhibited a strong current dependence. With LCF–YSZ, the

Figure 7. SEM images of a) the porous YSZ scaffold, b) LSF film on the
YSZ scaffold after calcination at 850 8C, c) LSF film after testing for 1000 h
as 700 8C, and d) LSF film after calcination at 1100 8C. Reproduced with
permission from reference [85]. Copyright 2007 The Electrochemical
Society.

Figure 8. Schematic diagram of infiltrated LSF–YSZ cathode a) after
calcining in air at 850 8C and b) after calcining at higher temperatures
(>1000 8C) or long term aging.
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Figure 9. Impedance spectra obtained from fuel cells with infiltrated
electrodes as a function of the active component, LSF (&), LBF (#),
and LCF (~), used in the cathode. The composite cathodes in each of
these cells were calcined at 1100 8C. The filled symbols show data
measured at open circuit while the open symbols were obtained at a
current density of 100mA cm"2. Reproduced with permission from
reference [101]. Copyright 2008 The Electrochemical Society.
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Probe the nature of atomic scale surface chemistry  or interface crystallography
rather than the device scale micro-structural perturbations in SOFC conditions:

T = 500 - 900 °C, PO2 ≈ 10-5 - 1 atm, Overpotential ≈ 0 - 0.4 V 
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Relaxed Films:
Misfit Dislocations from Surface

Strained Films:
Inherited Dislocations
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  Films
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How do Dislocations Impact Surface Properties?
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significant substrate effect: 
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significant substrate effect: 
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1.  la O’ et al, J. Electrochem sec. (2009). 
2.  De Souza et al, Mater. lett. (2000). 
3.  Yan et al, Solid state ionics. (2011). 
4.  Kan et al, Solid state ionics. (2010). 
5.  Yasuda et al, J Solid State Chem. (1996). 

Our data agree with literature:

 Kchem is on the order of 10-5cm/s.1-5

 Ea1: 1.48 eV for microelectrode1, 
          1.32 eV dense pellet2,

 Ea2:  0.8 eV (100) and (111) on STO3,  
           0.07-0.8 eV powder4.

I 

(a) kgrain 
kgb kgb 

(b) 
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Temp / K 883 923 986 1088 1191 
A 0.6 0.7�� 0.8 1� 1�

koxi, 1 !10-6 / cms-1 0.668 1.09 4.20 21.8 32.4 
koxi, 2 !10-6 / cms-1 12.0 14.0 29.2 N/A�� N/A��
kred, 1 !10-6 / cms-1 0.996 1.67 6.42 41.1 55.8 
kred, 2 !10-6 / cms-1 15.0 23.1 48.4 N/A�� N/A��

!

  

� 

g(t) =
σ t −σ final

σ final −σ initial

=1− Aexp(−
k1,chem t
L

) − (1− A)exp(−
k2,chem t
L

)

Kgrain 
Kgb Kgb 

(b) 
Kgrain 

Kgb Kgb 

(c) 

Low T High T 

(a) 
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600 nm LSM on YSZ (111) with different grain size 

RMS : 3.1 nm 
Sa : 4.2 um2 

850°C annealed 24 hr 

0.5 um 

900°C annealed 24 hr 

0.5 um 

RMS : 3.3 nm 
Sa : 4.3 um2 

Grain size increases 

Post-annealing after  
750°C deposition 

Grain size: ≈ 100 nm  Grain size: ≈ 150 nm  

Temp / K 883 923 986 1088 1191 
A small grain 0.6 0.7� 0.8 1 1 
A big grain 0.7 0.75� 0.84 1 1 

Kchem values for the fast process and the slow process are the same for both grain sizes. 
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Comparison	
  of	
  Textured	
  and	
  Epitaxial	
  (110)
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Ea,2=0.87 eV 

Ea,1=1.57 eV 
Ea=1.2 eV 

(110) LSM-YSZ fast process 

(110) LSM-YSZ slow process 

(110) LSM-STO 

ln
 k

ox
i /
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m

s-1
 

*N100

*S100
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Summary
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Two apparent processes occuring on the surface (Ea) for Kchem .

These were interpreted as belonging to:
      (1) the native surface response of individual grains/variants and 
      (2) the variants boundaries / grain boundaries of the textured films. 

The first (native surface) process : EA,1 ≈ 1.5 eV, 
       the second (extended defect) process EA,2 ≈ 0.75 eV. 
       
The Kchem,2 values are almost 3 orders of magnitude higher than the Kchem,1 values at low temperatures (< 700°C)

Depends on the density of the defects. 

At higher temperatures, the data can be fit with one Kchem 
Intermediate value of EA indicate that both processes contribute to overall exchange
The native surface, higher activation energy process is competitive with 

The native surface processes are 
 Strain dependent
 Orientation Dependent
 Substrate dependent
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