Kinetics of Oxygen Reduction in LSM and LSCF

Linc Miara, Jacob Davis,, U.B.Pal, S.N.Basu, K.Ludwig, and <u>S.Gopalan</u> Division of Materials Science and Engineering, Boston University

Motivation:

The Oxygen Reduction Reaction:

Where does this take place:

- On the surface?
- In the bulk?
- On 0 h (e.g.) hetero4/red? = 20^{2-}
- At the three phase boundary?
- At the cathode/electrolyte interface?
- Does it depend on the material?

What processes are important?

What processes are important for oxygen reduction?

BU Cathode Project...

X-ray Techniques

Surface Composition [TXRF]

Local Electronic Structure [EXAFS], [XANES]

Energy Resolving Fluorescence

Thin film sample

Window energy range for

1600

Ratio of the A-site to B-site, $\frac{ST+LO}{Mn}$

Annealed at 800°C for 1 hour

- There is manganese enrichment at the surface during annealing.
- Quenched and cooled sample are similar.
- Suggests surface composition developed at high temperature is preserved.
- Experiments at high temperature are not done yet.

LSM-20 Defect Chemistry Model for an Electronic Conductor

Electroneutrality:

$$2[V_{0}^{"}] + [Mn_{B}^{"}] = [Mn_{B}^{'}] + [Sr_{A}^{'}] + 3[V_{A}^{"'}] + 3[V_{B}^{"'}]$$

A-site balance:

$$[La_A^x] + [Sr_A'] + [V_A'''] = 1$$

B-site balance:

$$\left[Mn_{B}^{'}\right]+\left[Mn_{B}^{x}\right]+\left[Mn_{B}^{'}\right]+\left[V_{B}^{'''}\right]=1$$

O-site balance:

$$[O_0^x] + [V_0^*] = 3$$

Metal contents:

$$\frac{[La_A^x]}{[Sr_A']} = \frac{1-x}{x}$$

$$\frac{\{[La_A^x] + [Sr_A']\}}{\{[Mn_B'] + [Mn_B^x] + [Mn_B']\}} = y$$

Shottky-reaction:

$$K_S = [V_0^{\cdot \cdot}]^3 \cdot [V_A^{\prime \prime \prime}] \cdot [V_B^{\prime \prime \prime}]$$

Redux reaction:

$$K_r = \frac{[Mn_B^x] \cdot [V_0^x] \cdot PO_2^{1/2}}{[Mn_B^x] \cdot [O_0^x]}$$

Charge disproportionation:

$$K_{i} = \frac{\left[Mn_{B}^{'}\right] \cdot \left[Mn_{B}^{'}\right]}{\left[Mn_{B}^{x}\right]^{2}}$$

Solved Concentrations

For a given x, y K_s , K_r , K_i can generate relevant concentrations versus T and P_{O2} .

TXRF provides specific information about x and y on the surface. Next step is to calculate the Brouwer diagram of LSM surface.

Kinetic Measurements Using Polycrystalline Thin Film Electrodes

2 Paffirstal/ !! forcOxygrethRectSurffrore Reathtion...

Experimental – LCM Patterned Cathodes:

Known to have low ionic conductivity, can we find evidence of "Surface Path?"

Generate Patterns:

- TPB length = $450 1600 \text{ cm cm}^{-2}$
- Cathode/electrolyte area = constant

LCM - Evidence of Surface Path:

Two parallel paths:

$$\frac{1}{R_p} = \frac{1}{R_p^{TPB}} + \frac{A_A}{R_p^{MIEC}}$$

<u>Where:</u>

TPB due to pores

$$R_P^{TPB} = \frac{
ho_P}{l_{TPB}}, \qquad l_{TPB} = l_{TPB_p} + l_{TPB_o}$$
Pattern TPB

$$\frac{1}{R_p} = \frac{l_{TPB_p}}{\rho_p} + \boxed{\frac{l_{TPB_o}}{\rho_p} + \frac{A_A}{R_p^{MIEC}}}$$

"Surface Path": direct reduction of O₂ at TPB or by surface diffusion

R. Radhakrishnan, A. V. Virkar, and S. C. Singhal, *JECS*, vol. 152, pp. A210-A218, 2005.

Total Polarization scales inversely with TPB

LCM – Evidence of Surface Path:

$$\frac{1}{R_p} = \frac{l_{TPB_p}}{\rho_p} + \frac{l_{TPB_o}}{\rho_p} + \frac{A_A}{R_p^{MIEC}}$$

T °C	R_{p}	$\mathbf{R_p}^{(\mathrm{TPB})}$	$R_p^{(miec)}$
800	15	19	74
750	25	30	121
700	53	62	285
650	116	134	662
600	253	290	1,597

On average **TPB path** is ~4 fold **less resistive**, and thus the most likely path

"Surface Path": direct reduction of O₂ at TPB or by surface diffusion

Total Polarization scales inversely with TPB

Goals:

- 1. Derive a model incorporating dominant processes.
- 2. Simulate impedance data to extract relevant kinetic parameters.
- 3. Determine rate limiting steps.

Model: Reaction Scheme

$$O_2 + 2s \stackrel{k_{ad}}{\longleftrightarrow} 20^{ad}$$

Gas

Surface Diffusion:

$$\frac{d[O_{ad}]}{dt} = D_s \frac{d^2[O_{ad}]}{dz^2}$$

Reduction/

Incorporation Reaction:

$$20^{ad} + 2V_{\ddot{0}}^{YSZ} \xrightarrow{k_1} 2O_{o}^{x-YSZ} + 2h + 2s$$

Cathode

<u>Define</u>:

$$\theta = [O^{ad}]/\Gamma$$
 and $s = \Gamma \cdot (1 - \theta)$

 Γ = Total # of oxygen adsorption sites

Mass balance

$$\frac{d\theta}{dt} = 2k_{ad}P_{02}\Gamma(1-\theta)^2 - 2k_{des}\Gamma\theta^2 - k_1[V_{\ddot{0}}]\theta + k_{-1}[O_0^x](1-\theta)$$

Charge Balance: $I_F = 2\Gamma F A_a [k_{-1}[O_0^x](1-\theta) - k_1[V_{\ddot{0}}]\theta]$

Surface Mass Transport:

- Incorporated using 1D
 Finite-Difference Method
- Compartments are smallest closest to TPB (expand geometrically away) to capture the higher gradient at the interface.
- The concentration of O^{ad} is considered uniform in a given compartment
- Surface is discretized to 6δ , where δ is the penetration depth determined by:

$$2\pi^{-1/2}~=~\delta\sqrt{\omega_{max}~/2D_S}$$

Initial and Boundary Conditions:

- Initial Condition: $\theta(z,0) = \theta_0$ - Where: $\frac{\theta_0}{1-\theta_0} = K\sqrt{pO_2}$; with $K = \sqrt{\frac{k_{ad}}{k_{des}}}$
- Boundary conditions:
 - Infinitely far away (i.e. 6δ): $\theta(\infty,t) = \theta_0$
 - At the TPB interface:
 - The current equals the charge balance
 - The electron transfer reaction only takes place in this compartment

Dependence of kinetic Parameters on:

Temperature:

$$k_{ad} = k_{ad}^{o} \exp\left(\frac{-E_{ad}}{RT}\right)$$
 $k_{1}^{eq} = k_{1}^{o} \exp\left(\frac{-E_{fc}}{RT}\right)$

$$k_{des} = \mathbf{k}_{des}^{o} \exp\left(\frac{-E_{des}}{RT}\right)$$
 $\mathbf{k}_{-1}^{eq} = k_{-1}^{o} \exp\left(\frac{-E_{bc}}{RT}\right)$

Electrode Potential:

$$k_1 = k_1^{\text{eq}} \exp\left(-\frac{\beta F}{RT}(\Delta \chi)\right)$$
 $k_{-1} = k_{-1}^{\text{eq}} \exp\left(\frac{(1-\beta)F}{RT}(\Delta \chi)\right)$

$$\Delta \chi = 2\eta - \frac{RT}{F} \ln \left(\frac{\theta}{1 - \theta} \, \frac{1 - \theta_o}{\theta_o} \right)$$

 η = applied overpotential at cathode/electrolyte interface

And:

$$\frac{\theta_0}{1-\theta_0} = K\sqrt{pO_2}; with K = \sqrt{\frac{k_{ad}}{k_{des}}}$$

Final form for Simulink:

Adsorption/Desorption

Final Block (
$$\omega$$
):
$$\frac{d\theta_{\omega}}{dt} = 2k_{ad}p_{0_2}\Gamma(1-\theta_{\omega})^2 - 2k_{des}\Gamma\theta_{\omega}^2 + \frac{1}{T_{\omega}}\left(\frac{q*\theta_{\omega-1}}{1+q} - \frac{(2q+1)\theta_{\omega}}{1+q} + \theta_0\right)$$
Diffusion

Block i:
$$\frac{d\theta_i}{dt} = 2k_{ad}p_{0_2}\Gamma(1-\theta_i)^2 - 2k_{des}\Gamma\theta_i^2 + \frac{1}{T_i}\left(\frac{\theta_{i-1}}{1+a} - \theta_i + \frac{\theta_{i+1}}{1+a}\right)$$

Charge Transfer/Incorporation

$$\begin{aligned} \text{TPB Block (1):} \quad & \frac{d\theta_1}{dt} = 2k_{ad}p_{0\,2}\Gamma(1-\theta_1)^2 - 2k_{des}\Gamma\theta_1^{\ 2} - k_f^{eq} \exp\left(-\frac{\beta F}{RT}\Delta\chi\right)\theta_1 \\ & + k_b^{eq} \exp\left(\frac{(1-\beta)F}{RT}\Delta\chi\right)(1-\theta_1) + \frac{1}{T_1}\left(-\frac{\theta_1}{1+q} + \frac{\theta_2}{1+q}\right) \end{aligned}$$

* $T_i = \Delta z_i^2 / 2D$; q = geometric factor expanding block size

Typical Simulation Results:

Surface Coverage:

Surface Diffusivity:

Adsorption and Desorption Coefficients

Surface processes:

 $700C - P_{O2} = 0.21$ atm

"Gerischer" shaped indicates — co-limitation

$$Z_G = R_{chem} \sqrt{\frac{1}{1 - j\omega t_{chem}}}$$

Bode Plot Analysis:

Rate Determining Steps:

Conclusions from LCM patterned Cathodes:

☐ Determined that "surface path" is ~4 fold less resistive than "bulk path". ☐ Modified the SSM model developed by Mitterdorfer et al. to account for surface potential ($\Delta \chi$) and implemented in Matlab. \square Estimated temperature and pO₂ dependence of: D_s, k_{ad} , k_{des} , k_f^{eq} , k_b^{eq} , and surface coverage (θ). ☐ At temperatures below 700 °C was co-limited by diffusion and adsorption. At high temperatures incorporation reaction contributions to total polarization increase significantly. Low scatter between samples suggests that the

model correctly accounts for the geometry changes.

LSCF vs. LCM – far weaker TPB dependence

Acknowledgments

DOE SECA Program and Boston University for funding.

 Lax Saraf and Tiffany Kaspar at the EMSL @ PNNL for experimental support.