Rolls-Royce Coal-Based SECA Program Update
26 July 2011
Ted Ohrn and Zhien Liu
Outline

- RRFCS SECA Program and IP-SOFC Technology
- IGFC Systems Analysis
- Block-scale Test Rigs
- IP-SOFC Durability
- IP-SOFC Optimization
RRFCS SECA Program

- Phase 1
 - Extended to Sept 2011
 - 11 kW Metric Test to commence in Q3
 - Partners:
 - UCONN: BOP alloys/coating, Cr release rates
 - CWRU: detailed analytical analysis (TEM, XPS)
 - ORNL: substrate mechanical properties
 - PNNL: glass-ceramic seal
RRFCS Integrated Planar SOFC

- **RRFCS IP-SOFC operates at high voltage, low current**
- **Narrow cell pitch reduces ohmic losses**
- **Extruded MgO+MgAl$_2$O$_4$ substrate with screen printed layers**

Bundle assembly (~350W):
Serial fuel and current flow

Block assembly (~20kW):
5 strips of 12 fuel-parallel bundles

Initial 1MW distributed power system will consist of ~250kW generator modules with larger blocks

Via-based interconnect design

- Porous substrate
- YSZ
- Anode current collector
- Primary Interconnect
- Air
- Cathode current collector
- Cathode

RRFCS SOFC operates at high voltage, low current

Narrow cell pitch reduces ohmic losses

Extruded MgO+MgAl$_2$O$_4$ substrate with screen printed layers
Market Entry is a 1MW Distributed Energy System

- Natural gas fired
- Potential net-AC electrical efficiencies of 60%
- Very low environmental impact, quick wins on air quality
Outline

- RRFCS SECA Program and IP-SOFC Technology
- IGFC Systems Analysis
- Block-scale Test Rigs
- IP-SOFC Durability
- IP-SOFC Optimization
Rolls-Royce data

Plant Configuration

RRFCS NG “Dry Cycle” Configuration

- Uses “Cold Gas Clean-up” providing:
 - anode recycle to achieve,
 - sufficient steam in feed for reforming
- IGFC cycle similar to current RRFCS natural gas cycle

Current IGFC Plant Configuration

- Heat Source for Cathode Loop:
 - Partially-Spun Anode Gas,
 - Heated Cathode Loop Air,
 - Hot Recycle
 - Dried Coal-Derived Syngas

Anode Exit Composition

<table>
<thead>
<tr>
<th>Cycle</th>
<th>NG, dry</th>
<th>IFGC</th>
<th>IGFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uf (HHV)</td>
<td>80</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Anode Exit Composition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>16.2</td>
<td>8.0</td>
<td>4.1</td>
</tr>
<tr>
<td>CO</td>
<td>8.9</td>
<td>7.7</td>
<td>3.9</td>
</tr>
<tr>
<td>Total Flammables</td>
<td>25.1</td>
<td>15.7</td>
<td>8.0</td>
</tr>
<tr>
<td>H₂O</td>
<td>47.5</td>
<td>44.6</td>
<td>48.7</td>
</tr>
<tr>
<td>CO₂</td>
<td>23.8</td>
<td>39.2</td>
<td>43.0</td>
</tr>
</tbody>
</table>
60% overall efficiency requires:
- Inter-cooling of all gas compression
- 90% coal gasifier efficiency
- ~90% fuel utilization (challenging)
- Improved ASR (~30% relative to current technology), demonstrated with advanced cathodes

Increased pressure did not show performance improvement because:
- Improved reactivity at elevated pressure was offset by
- Less air and therefore, increased reaction resistance due to oxygen depletion
Porous Inert Substrate Controls Reforming Endotherm

- Reforming occurs as CH$_4$ diffuses to reaction site at anode-electrolyte interface
 - Rapid reforming yields equilibrium concentration at anode
 - Rate of bulk reforming controlled by diffusion of CH$_4$ to anode
- Small-scale cell experiments support this mechanism.

![Diagram showing electrolyte layer, anode layer, CH$_4$, H$_2$, H$_2$O, CO, and CH$_4$ at equilibrium at reaction site.](image)

![Graph showing CH$_4$ mole fraction as a function of cell number from fuel inlet for low and high permeability tubes.](image)
On-Cell Reforming Provides no Efficiency Improvement in a Pressurized System

- Heat absorption via reforming at constant cathode recycle ratio,
 - required less air, and enabled
 - a contracted temperature profile (i.e. increasing inlet temperature, higher average temperature)
- Higher average temperature did not yield improved performance because;
 - Decrease in average ASR was offset by
 - Increase in reversible voltage

<table>
<thead>
<tr>
<th>On-Cell Reforming Results for Repeat Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>% On-Cell Reforming</td>
</tr>
<tr>
<td>Constant Fuel Feed (HHV) kWe</td>
</tr>
<tr>
<td>Constant Uf (HHV) %</td>
</tr>
<tr>
<td>Constant Current Density mW/cm²</td>
</tr>
<tr>
<td>Fuel Cell Anode In</td>
</tr>
<tr>
<td>H₂ mole %</td>
</tr>
<tr>
<td>CO mole %</td>
</tr>
<tr>
<td>CH₄ mole %</td>
</tr>
<tr>
<td>Fuel Cell Operation</td>
</tr>
<tr>
<td>Model Calculated ASR ohm-cm²</td>
</tr>
<tr>
<td>Vreversible volts</td>
</tr>
<tr>
<td>Air-Side Operation</td>
</tr>
<tr>
<td>Air Inlet Temperature deg. C</td>
</tr>
<tr>
<td>Air Outlet Temperature deg. C</td>
</tr>
<tr>
<td>Air Inlet Flow g/s</td>
</tr>
<tr>
<td>Cathode Recycle Ratio</td>
</tr>
<tr>
<td>Predicted Power Output KW</td>
</tr>
<tr>
<td>Predicted Efficiency %</td>
</tr>
</tbody>
</table>

But, on-cell reforming provides opportunities for stack delta-T management, influencing long-term durability
Distribution of RRFCS IGFC System Costs

- Estimates for 2 stages of technology
 - Current technology (Ph. 1 block): 0.29 ohm-cm2
 - Next generation (Ph. 2 candidate): 0.24 ohm-cm2, precious metal cost savings
- Monte Carlo simulations with variables having greatest cost uncertainty
- Cost estimates
 - Current technology: $673/kW
 - Next generation: $621/kW

Monte Carlo Simulation
Outline

- RRFCS SECA Program and IP-SOFC Technology
- IGFC Systems Analysis
- Block-scale Test Rigs
- IP-SOFC Durability
- IP-SOFC Optimization
Block-scale Test Rigs

- Rigs closely represent product
 - Anode and cathode recycle
 - Heat exchanger
 - Reformer
 - OGB
 - Ejectors
 - Insulation system, thermal self-sustaining
 - Control system/methodology
 - Safety systems

- These rigs are providing the foundational precommercial durability database
 - 3 rigs in Derby, UK
 - 1 rig in Canton, OH
Block Rigs Representative of Heat Balance within Generator Modules and Considered Thermal Self-Sustaining

Phase 1 metric test meets the TSS requirement in Phase 2

- **Generator Module (GM)**
 - Exhaust gas expanded through TG
 - Provides heat of compression for incoming air
 - OGB heat transfer to air by HX

- **Pressurized Block Rig**
 - No TG, air compressors used
 - TG compressor heat simulated with electric heaters upstream of main test vehicle
 - 2kW extra heat to offset greater heat loss for block vs GM (surf. area:volume)

Rolls-Royce data

July 26, 2011
Schedule for Pressurized Metric Tests

- Completing manufacture of the latest technology 10 kW class metric block
- UK rig has completed recent 1000 and 500 hour block tests of pre-SECA technology that:
 - Confirmed performance expectation with new dry cycle versus original cycle with combustion products in cathode stream
 - Confirmed reliable operation of rig to be used for metric test
- Commence test in 3rd Quarter
- Timing of test influenced by substrate qualification cycle
 - Conservative path taken for substrate selection for strip build
- Additional metric testing through Sept 2012 (~20 kW)
Outline

- RRFCS SECA Program and IP-SOFC Technology
- IGFC Systems Analysis
- Block-scale Test Rigs
- IP-SOFC Durability
- IP-SOFC Optimization
Degradation and Life in Operation

- Degrade efficiency to meet constant power

Anode Loop Efficiency

- 0.037 ohm-cm²/1000 hrs (1.5% Power/1000 hrs CC)
- 0.003 ohm-cm²/1000 hrs (0.12% Power/1000 hrs CC)

Power Output, % Rating

- 0.12% - Efficiency
- 1.5% - Efficiency
- 0.12% - Power
- 1.5% - Power

Assumes:
- System Avg Vrev = 0.936 V
- Power = 0.8 W/cell

0.003 ohm-cm²/1000 hrs
(0.12% Power/1000 hrs CC)
0.037 ohm-cm²/1000 hrs
(1.5% Power/1000 hrs CC)
Durability Testing Program

- Map long-term performance over operating envelope
 - Anode Inlet: 67% flammables, 25% H₂O
 - Anode Outlet: 25% flammables, 50% H₂O
 - Cathode Inlet: 800°C, 12% O₂
 - Cathode Outlet: 920°C, 10% O₂ (extreme envelope)

- 5-cell Scale Tests
 - Full system conditions
 - Minimum 2000 hours
 - Current longest test ~ 9500 hrs

- Pressurized Bundle Tests
 - Complete anode flow path
 - Single cathode strip condition
5-cell Power Durability Trends

- Current IP-SOFC technology meets SECA Phase 1 degradation targets

- Cathode: ~10% O\(_2\), 1.2% H\(_2\)O, bal N\(_2\)
- 6.4 Bara

- PCT65: 925°C, 0.49%/1000 hrs
- PCT63: 860°C, 0.33%/1000 hrs
- PCT67: 800°C, 0.72%/1000 hrs

Shutdown for Post-test Analysis
Durability Data Summary

- Current IP-SOFC technology is projected to meet power and efficiency targets over a 2-year service life

Targeted Operating Range

- Useful Stack Life: 2866 hrs
- ASR @ 16K hrs = 0.42 ohm-cm²

Temperature, °C

Useful Stack Life

- 2000 hrs
- 4000 hrs
- 2866 hrs
- 1150 hrs
- 9028 hrs
- 1590 hrs
- 7845 hrs
- 3606 hrs

ASR, ohm-cm²

- Model: BOL
- Model: EOL
- PCT48 Inlet
- PCT59 Inlet
- PCT63 Mid-Block
- PCT65 Outlet
- PCT67 Outlet
- Bundle PBT3
- Bundle T1200
- PCT87
- PCT89

ASR @ 16K hrs = 0.42 ohm-cm²
Bundle Scale Performance

- Bundle performance matches models based on subscale performance
 - Bundle and subscale: 0.28 ohm-cm2 at block average temperature
- Performance to > 90% U_F (system) behaves as predicted

![Graph showing tube voltage vs. current density with models and experimental data points for different tube and model configurations at specified reformate and temperature conditions.](image-url)
Bundle Peak Power Consistent with Cost Model

- Achieved at 75% U_F and 0.75 volts/cell
Bundle vs 5-cell Durability Comparison

- Bundle tests (360 cells per bundle) show similar durability trends as 5-cell test (PCT63) at same conditions

![Graph showing Power Density per RU, mW/cm² over time on test, hours. The graph compares PCT63: 860°C, Bundle T1200: 860°C, and Bundle PBT-3: 860°C in terms of bundle power, Watts. The cathode is described as ~10% O₂, 1.2% H₂O, bal N₂ at 6.4 Bara.](image-url)
Optimization of bundle-to-bundle fuel distribution

- Bundle geometry simplified to achieve equal pressure drop then stacked into a strip. This results in a simpler and quicker CFD model.
- Redesigned strips achieve improved bundle-to-bundle fuel distribution
- Block-to-block fuel flows are also well balanced
Outline

- RRFCS SECA Program and IP-SOFC Technology
- IGFC Systems Analysis
- Block-scale Test Rigs
- IP-SOFC Durability
- IP-SOFC Optimization
 - Understand Sources of Degradation
 - Active Layers Improvement
Using Impedance Analysis to Track Degradation Sources

Referenced cathode symmetric cell test

Regular fuel cell with LSM cathode
Cathodic Peak Changes with Time

- Primary degradation mechanism appearing to be associated with the cathode at 860°C

Parametric cathode testing
- EIS to verify cathode processes

EIS data versus time

- 1.2% Steam, Varying O₂
- Anode: 26%H₂/37%H₂O
- Pressure = 6.4 Bara
- Temperature = 860°C

- 5% O₂
- 11.3% O₂
- 20.6% O₂

- 75 Hz
- 190 Hz
- 300 Hz

- 150 Hz @8000 h
- 300 Hz @1300 h

- PCT63B
- Cathode: 12%O₂
- Anode: Anode
- Midpoint
- Temperature = 860°C
- Pressure = 6.4 Bara

- 1313 hrs
- 2000 hrs
- 6000 hrs
- 7000 hrs
- 8000 hrs
Cathode Analysis after Long-Term Testing

- Mn-rich at cathode/electrolyte interface
- 3D reconstruction in process. Preliminary results may indicate possible microstructure change (CWRU)

860°C for 8000 hrs

Cathode pillar by CWRU
Degradation Increases with Temperature

Tests run at different conditions (800°C, 860°C, 925°C), but taken to identical conditions for EIS comparison

- Degradation rate greater at higher temperatures
- Increases in both anodic and cathodic peaks
- Cathodic peak change is dominant

![Graph showing degradation increases with temperature](image-url)
Outline

- RRFCS SECA Program and IP-SOFC Technology
- IGFC Systems Analysis
- Block-scale Test Rigs
- IP-SOFC Durability
- IP-SOFC Optimization
 - Understand Sources of Degradation
 - Active Layers Improvement
Modification of LSM-Based Cathode

- Modification to the cathode composition has resulted in less free MnOx
- Minor MnOx observed at interface upon testing

Modified cathode: 925°C for 2000 hrs
Durability of Modified LSM-based Cathode

- RRFCS has observed an initial degradation when testing in moist (3%) air, accentuated at low temperatures (<800°C)
- Improvement shown for a modified LSM-based cathode
- Long term degradation at high temperature is under evaluation
Reversibility of Moisture-Induced Degradation
May be a Clue to Origin

- ASR change at low temperature is reversible at high temperatures

Effect of unstable fuel supply

Add 3% H$_2$O on cathode

Cathode: 12%O$_2$, anode: anode inlet fuel

775°C
Cell ASR Breakdown

- Full instrumentation to separate ASRs from different components
- EIS plus RC circuit fitting to separate cathode and anode
- Cathode dominates ASR at low temperature
- Cathode development to achieve lower ASR and lower temperature operation.

![Cell ASR Breakdown Graph]

- ASR Contribution, ohm-cm²
- Temperature: 800°C, 860°C, 920°C
- Components: Interconnect, CCC ohmic, ACC ohmic, Electrolyte, Cathode activation, Cathode concentration, Anode activation, Anode concentration
Alternate Cathode for Lower-ASR

- Lower overall cell ASR can allow reduced stack operation for improved durability and/or improved efficiency or cost
- LSCF, a well-accepted cathode, has CTE mismatch with RRFCS substrate
- Ruddlesden-Popper nickelate cathodes are under evaluation (Ln_{n+1}Ni_nO_{3n+1})
 - Nickelates, with lower E_a, can significantly reduce cathode ASR, especially at lower operation temperatures.
 - This is a long term development activity

![Graph showing cathode symmetric cell testing at various temperatures and pressures, with data points for 6.4 bara, 12% O_2.]
Initial Evaluation of Pr$_2$NiO$_4$

- Shows phase instability under testing conditions

Pr$_2$NiO$_4$ is unstable

As-fired Pr$_2$NiO$_4$

200 hr/900C

Higher order Pr$_{n+1}$Ni$_n$O$_{3n+1}$

PrO$_x$

(PrNi)O$_x$

PrO$_x$

NiO

Interlayer
Improved Nickelate Cathodes Show Less Decomposition

- XRD did not identify phase decomposition after short term aging
- TEM shows only minor decomposed phase, further optimization underway

Improved nickelate is more stable

As-fired

200 hrs/900C

Single phase

Improved nickelate is more stable
Anode Degradation Mechanisms Identified

- Noticeable microstructure change after testing, especially at higher temperature, limited impact on performance to 9000 hours
- Early evidence of materials migration
- Peak block temperature and fuel utilization conditions pose greatest risk to anode long-term durability
- Developing even more stable anode side materials for 5-year service life

Anode 3D reconstruction by CWRU under separate program

Microstructure state after 8000 hours (860°C, anode midpoint)
Anode Optimization for 5-year Service

- More stable microstructure
- Maintain reliability: interfacial strength/cell adhesion to substrate
- Promising initial results for screening under aggressive system conditions (925°C, low flammables)

![Graph showing power degradation rates and cell power density]

- Anode A: 0.4%/1000 h
- Anode B: 0.1%/1000 h

Single-layer

12%O₂-dry

1 bar

Cell Power Density, mW/cm²

Elapsed Time, hours

Anode inlet

Anode outlet
Microstructure of Single Layer Anode Tested at Aggressive System Conditions

- Single layer performs as anode and in-plane current collector, engineered conductance
- Candidates show stable uniform microstructures
- Improved interfacial, cell attachment characteristics

Uniform microstructure after testing under aggressive system conditions

2300 hrs at 925°C at anode outlet
Durability of the Primary, cell-to-cell, Interconnect (PIC)

- Mitigated a major degradation mechanism in 2010, further validation in 2011
- Interconnect shows no degradation trend in 8000 hrs required for SECA metric test
Ceramic Interconnect: Long Term Objective

- **Modeling Results:**
 - Low conductivity requirement
 - Many material options

- **Materials and design:**
 - Single chromite layer
 - Bilayer structure*: p-type conductor on air side, n-type conductor on fuel side

*Srikanth Gopalan:

- **Challenge:** achieve gas-tight under constrained sintering conditions
- **Collaborating with Core Technology team PNNL**

![Graph](image-url)
Historical Cell Development Trend

- Single cell performance data for anode inlet fuel composition
- Factor of 2 improvement in ASR from pre-SECA
- Pressurized operation ASR benefit is ~0.05 ohm-cm²

The graph shows the development trend of cell ASR (Cell ASR, Ohm-cm²) with varying temperature (Temperature, °C) and pressure (1 bara, 6 bara). Key milestones include:

- 60-Cell with optimized LSM cathode
- ScSZ cathode
- Nickelate cathode

Technology frozen for near term block metric testing.
Conclusions

- Durability testing of IP-SOFC technology to >9000 hours exhibits average degradation rates <0.5%/1000 hours
- RRFCS hierarchic design shows scaling from subscale to full-scale bundle test articles
 - Similar performance expected at block-scale
- Current cell technology is on-track for initial commercialization
 - Also meets SECA defined cost targets
- Optimized anode and cathode approaches are being screened to achieve lower degradation rates
 - RRFCS views anode durability as top challenge for efficient IGFC systems operating at high U_F
 - Modified cathodes exhibit improved low-temperature moisture tolerance
- Thermal self-sustaining block test rigs prepared for metric test to commence later this quarter
Acknowledgements

- This material is based on work supported by the Dept. of Energy National Energy Technology Laboratory under Award Number DE-FE0000303
- RRFCS project manager Patcharin Burke and the entire SECA program management team
- UK and US based RRFCS team
- RRFCS SECA partners

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring of the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.