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Conclusions

 Methane vs. Diesel-type Hydrocarbons
 Comparable energy metrics

 Requires less O2 and CO2 sorbent per BTU

 Should facilitate reformer operation and waste heat 
utilization for reforming

 Methane/NG Can:
 Be a first generation fuel for SOFC-powered 

demonstration UUVs

 Open the door to other SOFC-powered platforms

 Offer a cleaner, more sustainable, and more secure 
energy infrastructure for the Navy
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Conceptual UUV
(Unmanned Undersea Vehicle)

Propulsion Section:  Trust Vectored Pumpjet, Control Surfaces, Recovery and 

Handling System, Future Integrated Motor Propulsor 

Ballast and Trim Section:  Pump, Valves, Aft 

Tank

Electronics and Control Section:  Power 

Distribution, Vehicle Computer, Navigation 

System, Communications System, 

Payload/Vehicle Integration Computer

Nose Section:  FLS, Acoustic 

Communications System

Energy Section: -Lithium 

Battery, AgZn Battery, 

Future Fuel Cell

Mission Payload Section:  ~5 Cubic 

Feet with Standard Interfaces

Forward Auxiliary Section:  SATCOM & GPS 

Antennas, Antenna Mast, Anchor, Forward 

Ballast Tank
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Proposed System Design with Anode Recycle
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 CaO + CO2 → CaCO3 + HEAT (178 kJ/mol)

 CaCO3 Decomposes ~ 850º C -Sorbent  showed over 70% 

conversion of CaO in gas 

mixture of                             

21% CO2/44% H2/35% steam

-Sorbent shows fast kinetics 

and stability for repeated 

cycles

-Production methods have 

been scaled up for this 

extruded CaO sorbent

-Sorbent provided by TDA 

Research, Inc. 

-Sorbent tested at NUWC 

Carbon Dioxide Scrubber
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2008 Laboratory System 
Demonstration

 30-Cell Delphi Stack integrated with 

1) InnovaTek’s Steam Reformer

2) TDA Research’s CO2 Sorbent

3) R&D Dynamics’ High Temperature Blower

 Benchmarks achieved in first Demo:

 > 75% S-8 Utilization

 > 90% Oxygen Utilization

 > 50% Efficiency (PSOFC / S-8 LHV)*

 > 1 kW

All achieved 

simultaneously in 

initial proof-of-

concept study 

(several hours of 

operation).  

* Furnace power neglected
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2010 Laboratory System Demonstration

 Goal:  Show that Waste 
Heat from SOFC stack can 
be used to drive steam 
reformer (from Delphi 
Corporation)

 This task could not be 
accomplished without also 
using a burner to partially 
drive (heat) the reformer

Steam 

Reformer

SOFC 

Stack

Burner
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Isolated Steam Reformer Operation
(Simulated Anode Exhaust)

Delphi 
Reformer

Steam 
Generator 

Condenser

CH4 gas
(0-4 SLPM)

ReformateN2 gas (optional)
(0-20 SLPM)

H2O steam

Combustor 
exhaust

Anode exhaust
(to GC)

Air from 
Compressor

Combustor

Liquid Fuel
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Reformer Operation Notes

 JP-10 and S-8 fuels successfully steam reformed

 HC slippage when Ref outlet T < 500° C

 Ethane, ethylene…

 Combustor T > 800° C used to verify proper 
reformer temperature / active catalyst

 Mass balances > 95%

 Efficiency of 100-120% achieved (based on “free” 
superheated steam)
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System Energy Balance

SOFC

CO2 

Scrubber

Reformer

Methane In

Anode Exhaust

Pure Oxygen In

WORK (W) 

(ELECTRICITY)

HEAT (Q) 

(WASTE)

Reactions:

CH4(g)+2 O2 => CO2 + 2 H2O(g) + 800 kJ/molCH4

CO2(g) + CaO(s) => CaCO3,(s) + 178 kJ/mol CO2
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Process Energy

Total HEAT of RXNS for 
7.5 kg CH4, 30 kg LOX, & 
40 kg sorbent

104 kW-hr from CH4
23 kW-hr from sorbent
(127 kW-hr Total)

SOFC (output) -82 kW-hr electricity +     
-42 kW-hr heat 

Scrubber (output) -23 kW-hr heat

Methane Steam Reformer 
(input)

30 kW-hr heat

LOX heat-up 3 kW-hr heat

Total Waste Heat (output) -32 kW-hr or 25% of energy 
generated

Expected System efficiency 
based on LHV of methane

>60%  after parasitic losses
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Reactant-Based Energy Metrics
System Reactants & 
Fuel Cell Type

Specific Energy, 
W-hr/kg

Energy Density,
W-hr/L

SOFC, S-8/LOX/CO2

sorbent
1130 1050

SOFC, LNG/LOX/CO2

sorbent
1420 1060

SOFC, JP-10/LOX/CO2

sorbent
1180 960

PEM, 4wt.% H2 / LOX 1010 720

PEM, Liquid H2 / LOX 1150 710
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Reformer Testing with Real Anode Exhaust

Delphi 
SOFC Stack

Steam 
Generator 

Delphi
Steam 
Reformer

CO2 gas
(0-5 SLPM)

Anode 
Exhaust

N2 gas
(0-20 SLPM)

H2O steam

Cathode 
exhaust

O2 gas
(0-10 SLPM, 
2 channels)

Reformate
(to condenser 
and GC for 
analysis)

H2 gas
(0-20 SLPM,     
switchover)

Combustor

CH4 gas for 
burner
(0-5 SLPM)

Compressor 
Air Supply

Combustor 
Exhaust

Liquid Fuel 
OR
CH4 gas
(0-5 SLPM)
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During Methane UUV Test

 SOFC Inlet:

 20 sL/min H2 (65mol%), 4 sL/min CO2 (13%), and 4.8 
g/min steam (21%).  (30.4 sL/min total) 

 45 Amps, 30-cell stack

 SOFC Exhaust Blended with 3 sL/min CH4

 Reformer Outlet:  36.4 sL/min

 39% H2, 3% CO, 4.8% CH4, 41.7% H2O, 11.2% CO2, 

 Reasonable reformate composition considering no CO2

scrubbing and unreformed CH4, but some water collection 
will be needed to avoid excessive steam accumulation in 
anode recycle loop
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2011 Test Plans
 

Delphi 
SOFC Stack

Anode 
Recycle 
Blower

Delphi
Steam 
Reformer

Anode 
Outlet

N2 gas
(0-20 SLPM)

Cathode 
exhaust

O2 gas
(0-10 SLPM, 
2 channels)

Reformate Exhaust
(to condenser and 
GC for analysis)

CH4 or H2 gas
(0-20 SLPM)

Combustor

H2 or CH4 gas
(0-10 SLPM)

Compressor 
Air Supply

Combustor 
Exhaust

CO2

Scrubber

Anode Inlet Recycled 
Reformate

Steam Trap / Condenser

System Level Demonstrations with only 

methane gas and pure oxygen reactant feeds

15
Distribution Statement A - Approved for public 

release; distribution is unlimited



Mass Spectrometer
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Issues Affecting Waste Heat Usage

 Two Primary sources of waste heat:

 SOFC Stack & CO2 scrubber bed

 Variable active locations in CO2 scrubber bed

 Directing heat towards fuel vaporization

 Range of volatility in most liquid fuels, preventing 
carburization

 Variable SOFC power level
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Methane Pros/Cons for UUV Application

 Pros

 Easily vaporized, avoids carburization

 Internal Reforming

 “De-localized” Reforming

 Help prevent coking in SOFC (C2+ HC’s)

 Max H/C ratio, thus lowers O2 consumption

 Cons

 Decreased heat from CO2 scrubber

 Dewar for storage

 Water separation from anode loop 
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Other Fuel Options?

 Liquid propane or butane
 PRO:  Facilitates distribution & storage

 CON:  Decrease H/C ratio

 Methanol
 PRO:  Can backfill reactant space with product water

 CON:  Toxic, corrosive, & generally accepted as more 
hazardous than NG

 Ethanol
 PRO:  Can backfill reactant space with product water

 CON:  Lower H/C ratio
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Navy Goals for Fleet

 Reduce Foreign Oil Dependence             
(Energy Security)

 NG from ocean floor or bio-feedstocks

 Energy Efficiency

 Environmental Cleanliness

 Reduce Carbon Footprint

 Economics

 Long-term availability & multiplatform uses
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Conclusions

 Methane
 Comparable energy metrics vs. liquid fuels

 Requires less O2 and CO2 sorbent per BTU

 Should facilitate reformer operation and waste heat 
utilization for reforming

 Methane/NG Can:
 Be a first generation fuel for SOFC-powered 

demonstration UUVs

 Open the door to other SOFC-powered platforms

 Offer a cleaner, more sustainable, and more secure 
energy infrastructure for the Navy
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Conclusions

 Efficiency ~45% with fuel and oxidant utilizations near 
85% is possible. 45% efficiency with 90% Uf results in 
a theoretical reactant specific energy of 4900 kJ/kg.

 Uncertainties remain regarding optimized CPOX 
design and operation using pure oxygen (pre-
combustion, sooting, start-up). 

 Optimized pure-O2 CPOX design is of interest to the 
NASA and could be valuable for potential missions.  
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Motivation

 LO2/LCH4 Offers a Significant reduction in the Size and 
Dry mass of a Spacecraft over LO2/LH2

 There are benefits to being able to have a power system that 
can share common fluids with the propulsion system
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Project Morpheus

 Morpheus is a vertical test bed vehicle demonstrating new green propellant propulsion 
systems and autonomous landing and hazard detection technology. Designed, 
developed, manufactured and operated in-house by engineers at NASA’s Johnson Space 
Center, the Morpheus Project represents not only a vehicle to advance technologies, but 
also an opportunity to try out “lean development” engineering practices.

 Solid Oxide Fuel Cells could provide power by using scavenged LOX\CH4 left as residuals 
in the propulsion tanks or by tapping into propellant made by In-Situ Resource 
Utilization(ISRU) processes. 
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System Layout for 2010 NASA Testing
 

Delphi 
CPOX 
Reformer

Delphi
SOFC

CH4 gas
(0-10 SLPM, switchover) Reformate

N2 gas
(0-20 SLPM)

Cathode 
exhaust

O2 gas
(0-10 SLPM, 
2 channels)

Anode exhaust
(to condenser 
and GC)

O2 gas
(0-5 SLPM)

H2 (0-5 SLPM), 
for Start-Up

Vented CPOX 
Exhaust 
During Start-
Up
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IV Plot for Stack Performance  
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Transient Analysis
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Stack Voltage, Current, & Utilizations 
over second day of testing
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Summary of Performance
Peak Performance Notes

Steady State Feeds into CPOX 

Reactor

CH4 Flow:  5.1 SLPM

N2 Flow:  0 SLPM

O2 Flow:  3.3 SLPM

O/C = 1.30

Fuel flow slightly increased from 

steady state to meet original O/C 

target

SOFC Stack with cathode feed of 

5.5 SLPM pure O2

46 Amps

85% CH4 Utilization

86% O2 Utilization

~ 0.88 V/cell

1210 Watts

~ 43% CH4, LHV

Stack was pushed to 50 amps to 

achieve ~90% fuel utilization & 45% 

efficiency, but cells 1,3,5, and 13 

suffered from fuel starvation

SOFC Exhaust 2.4 SLPM H2 (16%)

8.4 SLPM H2O (50.5%)

4.1 SLPM CO2 (27%)

1.0 SLPM CO (6.5%)

Mass balance > 95%

Planned Targets Actual Steady 

Performance

Comments

Start-up 

Combustor Flow

CH4 Flow:  2.15 SLPM

N2 Flow:  20 SLPM

O2 Flow:  5 SLPM

CH4 Flow:  2.15 SLPM

N2 Flow:  10 SLPM

O2 Flow:  5 SLPM

We had to lower N2 gas to get 

combustor to ignite at these 

flows, which are lower than 

typical start-up flows

Steady State 

Reformate Product

8.13 SLPM H2 (60.5%)

0.83 SLPM H2O (6.2%)

0.52 SLPM CO2 (3.8%)

3.96 SLPM CO(29.5%)

5.3 SLPM H2 (44%)

1.8 SLPM H2O (15%)

0.9 SLPM CO2 (8%)

3.0 SLPM CO(25%)

1.0 SLPM CH4 (8%)

With reformer outlet 

temperature ~600 C, equilibrium 

favors   5-10% methane
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Future Plans
 Forward Plan at NASA-Johnson Space Center(JSC)

 Continue breadboard CPOX reformer and stack testing 
at JSC to establish baseline performance on pure oxygen 
and methane reactants. 

 Investigate SOFC capabilities for potential integration 
into future spacecraft missions 
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