

Analysis of SOFCs for Air Independent Applications

12th SECA Workshop, July 2011

A. Alan Burke, Louis G. Carreiro

Naval Undersea Warfare Center (NUWC), Division Newport, Newport, RI; USA

Conclusions

- Methane vs. Diesel-type Hydrocarbons
 - Comparable energy metrics
 - Requires less O₂ and CO₂ sorbent per BTU
 - Should facilitate reformer operation and waste heat utilization for reforming
- Methane/NG Can:
 - Be a first generation fuel for SOFC-powered demonstration UUVs
 - Open the door to other SOFC-powered platforms
 - Offer a cleaner, more sustainable, and more secure energy infrastructure for the Navy

Conceptual UUV (Unmanned Undersea Vehicle)

Propulsion Section: Trust Vectored Pumpjet, Control Surfaces, Recovery and Handling System, Future Integrated Motor Propulsor

Ballast and Trim Section: Pump, Valves, Aft

Tank

Electronics and Control Section: Power Distribution, Vehicle Computer, Navigation System, Communications System, Payload/Vehicle Integration Computer

Nose Section: FLS, Acoustic Communications System

Energy Section: -Lithium Battery, AgZn Battery, Future Fuel Cell

Mission Payload Section: ~5 Cubic Feet with Standard Interfaces

Forward Auxiliary Section: SATCOM & GPS Antennas, Antenna Mast, Anchor, Forward Ballast Tank

Distribution Statement A - Approved for public release; distribution is unlimited

Oxygen Utilization

for this application!

nearly 100%

Proposed System Design with Anode Recycle

Distribution Statement A - Approved for public release; distribution is unlimited

Carbon Dioxide Scrubber

- CaO + CO₂ \rightarrow CaCO₃ + HEAT (178 kJ/mol)
- CaCO₃ Decomposes ~ 850° C

Over 50% mass gain demonstrated

- -Sorbent showed over 70% conversion of CaO in gas mixture of 21% CO₂/44% H₂/35% steam
- -Sorbent shows fast kinetics and stability for repeated cycles
- -Production methods have been scaled up for this extruded CaO sorbent
- -Sorbent provided by TDA Research, Inc.
- -Sorbent tested at NUWC

2008 Laboratory System Demonstration

- 30-Cell Delphi Stack integrated with
 - 1) InnovaTek's Steam Reformer
 - 2) TDA Research's CO, Sorbent
 - 3) R&D Dynamics' High Temperature Blower
- Benchmarks achieved in first Demo:
 - > 75% S-8 Utilization
 - > 90% Oxygen Utilization
 - > 50% Efficiency (P_{SOFC} / S-8 LHV)*
 - \bullet > 1 kW

All achieved simultaneously in initial proof-of-concept study (several hours of operation).

^{*} Furnace power neglected

2010 Laboratory System Demonstration

- Goal: Show that Waste Heat from SOFC stack can be used to drive steam reformer (from Delphi Corporation)
- This task could not be accomplished without also using a burner to partially drive (heat) the reformer

Isolated Steam Reformer Operation (Simulated Anode Exhaust)

Reformer Operation Notes

- JP-10 and S-8 fuels successfully steam reformed
- HC slippage when Ref outlet T < 500° C
 - Ethane, ethylene...
- Combustor T > 800° C used to verify proper reformer temperature / active catalyst
- Mass balances > 95%
- Efficiency of 100-120% achieved (based on "free" superheated steam)

System Energy Balance

Reactions:

$$CH_{4(g)} + 2 O_2 => CO_2 + 2 H_2O_{(g)} + 800 kJ/mol_{CH4}$$

$$CO_{2(g)} + CaO_{(s)} => CaCO_{3,(s)} + 178 \text{ kJ/mol } CO_2$$

Process	Energy
Total HEAT of RXNS for 7.5 kg CH4, 30 kg LOX, & 40 kg sorbent	104 kW-hr from CH ₄ 23 kW-hr from sorbent (127 kW-hr Total)
SOFC (output)	-82 kW-hr electricity + -42 kW-hr heat
Scrubber (output)	-23 kW-hr heat
Methane Steam Reformer (input)	30 kW-hr heat
LOX heat-up	3 kW-hr heat
Total Waste Heat (output)	-32 kW-hr or 25% of energy generated
Expected System efficiency based on LHV of methane	>60% after parasitic losses

Reactant-Based Energy Metrics

System Reactants & Fuel Cell Type	Specific Energy, W-hr/kg	Energy Density, W-hr/L
SOFC, S-8/LOX/CO ₂ sorbent	1130	1050
SOFC, LNG/LOX/CO ₂ sorbent	1420	1060
SOFC, JP-10/LOX/CO ₂ sorbent	1180	960
PEM, 4wt.% H ₂ / LOX	1010	720
PEM, Liquid H ₂ / LOX	1150	710

Distribution Statement A - Approved for public release; distribution is unlimited

Reformer Testing with Real Anode Exhaust

During Methane UUV Test

- SOFC Inlet:
 - 20 sL/min H₂ (65mol%), 4 sL/min CO₂ (13%), and 4.8 g/min steam (21%). (30.4 sL/min total)
- 45 Amps, 30-cell stack
- SOFC Exhaust Blended with 3 sL/min CH₄
- Reformer Outlet: 36.4 sL/min
 - 39% H₂, 3% CO, 4.8% CH₄, 41.7% H₂O, 11.2% CO₂,
- Reasonable reformate composition considering no CO₂ scrubbing and unreformed CH₄, but some water collection will be needed to avoid excessive steam accumulation in anode recycle loop

2011 Test Plans

System Level Demonstrations with only methane gas and pure oxygen reactant feeds

Mass Spectrometer

Work of the contractors of the c

Steam levels of 25-75% were measured with the MS

Issues Affecting Waste Heat Usage

- Two Primary sources of waste heat:
 - SOFC Stack & CO, scrubber bed
- Variable active locations in CO, scrubber bed
- Directing heat towards fuel vaporization
- Range of volatility in most liquid fuels, preventing carburization
- Variable SOFC power level

Methane Pros/Cons for UUV Application

- Pros
 - Easily vaporized, avoids carburization
 - Internal Reforming
 - "De-localized" Reforming
 - Help prevent coking in SOFC (C2+ HC's)
 - Max H/C ratio, thus lowers O, consumption
- Cons
 - Decreased heat from CO₂ scrubber
 - Dewar for storage
 - Water separation from anode loop

Other Fuel Options?

- Liquid propane or butane
 - PRO: Facilitates distribution & storage
 - CON: Decrease H/C ratio
- Methanol
 - PRO: Can backfill reactant space with product water
 - CON: Toxic, corrosive, & generally accepted as more hazardous than NG
- Ethanol
 - PRO: Can backfill reactant space with product water
 - CON: Lower H/C ratio

Navy Goals for Fleet

- Reduce Foreign Oil Dependence (Energy Security)
 - NG from ocean floor or bio-feedstocks
- Energy Efficiency
- Environmental Cleanliness
 - Reduce Carbon Footprint
- Economics
 - Long-term availability & multiplatform uses

Conclusions

- Methane
 - Comparable energy metrics vs. liquid fuels
 - Requires less O₂ and CO₂ sorbent per BTU
 - Should facilitate reformer operation and waste heat utilization for reforming
- Methane/NG Can:
 - Be a first generation fuel for SOFC-powered demonstration UUVs
 - Open the door to other SOFC-powered platforms
 - Offer a cleaner, more sustainable, and more secure energy infrastructure for the Navy

Acknowledgements

- Sponsor
 - U.S. Department of Energy (DOE)
 - Interagency Agreement with National Energy and Technology Laboratory (NETL)
- Collaborator
 - National Aeronautics and Space Administration(NASA)
 - Lyndon B. Johnson Space Center/EP3; Houston, TX

Analysis of SOFCs for Air Independent Applications

12th SECA Workshop, July 2011

Ken Poast, John Scott, Koorosh Araghi

National Aeronautics and Space Administration (NASA) Lyndon B. Johnson Space Center/EP3; Houston, TX

A. Alan Burke, Louis G. Carreiro

Naval Undersea Warfare Center (NUWC), Division Newport, Newport, RI

Conclusions

- Efficiency ~45% with fuel and oxidant utilizations near 85% is possible. 45% efficiency with 90% U_f results in a theoretical reactant specific energy of 4900 kJ/kg.
- Uncertainties remain regarding optimized CPOX design and operation using pure oxygen (precombustion, sooting, start-up).
- Optimized pure-O₂ CPOX design is of interest to the NASA and could be valuable for potential missions.

Motivation

- LO2/LCH4 Offers a Significant reduction in the Size and Dry mass of a Spacecraft over LO2/LH2
- There are benefits to being able to have a power system that can share common fluids with the propulsion system

Project Morpheus

- Morpheus is a vertical test bed vehicle demonstrating new green propellant propulsion systems and autonomous landing and hazard detection technology. Designed, developed, manufactured and operated in-house by engineers at NASA's Johnson Space Center, the Morpheus Project represents not only a vehicle to advance technologies, but also an opportunity to try out "lean development" engineering practices.
- Solid Oxide Fuel Cells could provide power by using scavenged LOX\CH4 left as residuals in the propulsion tanks or by tapping into propellant made by In-Situ Resource Utilization(ISRU) processes.

System Layout for 2010 NASA Testing

Distribution Statement A - Approved for public release; distribution is unlimited

IV Plot for Stack Performance

Feeds to the CPOX reformer were 3.3 L/min O_2 and 4.9 L/min CH_4 . Cathode Inlet Feed was 5.5 L/min O_2 .

Transient Analysis

Response of internal SOFC thermocouples during peak power excursion and transient power stepping analysis.

First order response

$$T' = (I')^2 K_P (1 - e^{-t/\tau_P})$$

release; distribution is unlimited

Stack Voltage, Current, & Utilizations over second day of testing

Summary of Performance

	Peak Performance	Notes
Steady State Feeds into CPOX	CH ₄ Flow: 5.1 SLPM	Fuel flow slightly increased from
Reactor	N ₂ Flow: 0 SLPM	steady state to meet original O/C
	O ₂ Flow: 3.3 SLPM	target
	O/C = 1.30	
SOFC Stack with cathode feed of	46 Amps	Stack was pushed to 50 amps to
5.5 SLPM pure O ₂	85% CH ₄ Utilization	achieve ~90% fuel utilization & 45%
	86% O ₂ Utilization	efficiency, but cells 1,3,5, and 13
	~ 0.88 V/cell	suffered from fuel starvation
	1210 Watts	
	~ 43% CH _{4, LHV}	
SOFC Exhaust	2.4 SLPM H ₂ (16%)	Mass balance > 95%
	8.4 SLPM H ₂ O (50.5%)	
	4.1 SLPM CO ₂ (27%)	
	1.0 SLPM CO (6.5%)	

	Planned Targets	Actual Steady	Comments
Start-up	CH ₄ Flow: 2.15 SLPM	Performance CH ₄ Flow: 2.15 SLPM	We had to lower N ₂ gas to get
Combustor Flow	N ₂ Flow: 20 SLPM O ₂ Flow: 5 SLPM	N ₂ Flow: 10 SLPM O ₂ Flow: 5 SLPM	combustor to ignite at these flows, which are lower than typical start-up flows
Steady State	8.13 SLPM H ₂ (60.5%)	5.3 SLPM H ₂ (44%)	With reformer outlet
Reformate Product	0.83 SLPM H ₂ O (6.2%)	1.8 SLPM H ₂ O (15%)	temperature ~600 C, equilibrium
	0.52 SLPM CO ₂ (3.8%)	0.9 SLPM CO ₂ (8%)	favors 5-10% methane
	3.96 SLPM CO(29.5%)	3.0 SLPM CO(25%)	
		1.0 SLPM CH ₄ (8%)	

Future Plans

- Forward Plan at NASA-Johnson Space Center(JSC)
 - Continue breadboard CPOX reformer and stack testing at JSC to establish baseline performance on pure oxygen and methane reactants.
 - Investigate SOFC capabilities for potential integration into future spacecraft missions

Acknowledgements

- DOE/NETL for SOFC stack & Support
- NUWCDIVNPT for Preliminary Testing