Modeling Tools for SOFC Design and Analysis

Moe A Khaleel

Brian Koeppel, Kurt Recknagle, Xin Sun, Elizabeth Stephens, Kevin Lai, Emily Ryan Pacific Northwest National Laboratory Richland, WA 99352

> 12th Annual SECA Workshop Pittsburgh, PA July 28, 2011

PNNL Modeling Activities: Objectives & Approach

Objectives

- Develop integrated modeling tools to:
 - Evaluate the tightly coupled multi-physical phenomena in SOFCs
 - Allow SOFC designers to perform numerical experiments for evaluation of stack electrochemical, thermal, and mechanical performance
 - Aid understanding of materials degradation issues
 - Provide wide applicability for industry teams' to solve their challenging design problems
- Provide technical basis for stack design

Approach: Multiphysics-based analysis tools

- SOFC-MP: A multi-physics solver for computing the coupled flowthermal-electrochemical response of multi-cell SOFC stacks
- Distributed Electrochemistry (<u>DEC</u>) model Cell level multi-physics model for considering the effects of local properties and conditions on global SOFC performance
- Targeted evaluation tools for specific cell design challenges
- Experimental support to provide material property data Pacific

PNNL Modeling Tools: Overview

- SOFC-MP
 - 2D and 3D multi-physics stack model
 - 2D model benchmarked with literature data
- Distributed Electrochemistry (DEC) Model
 - 3D multi-physics model of the SOFC electrodes and electrolyte for the investigation of SOFC performance and degradation issues
 - Degradation modeling framework
- Cathode Contact Paste Modeling
 - FEA model for the simulation of densification behavior in cathode contact materials
- Glass Seal Modeling
 - Investigate the behavior of glass seal materials and designs at operating temperatures
- Interconnect Modeling
 - Integrated modeling and experimental approach for prediction on interconnect lifetime

SOFC-MP:Multi-Physics Stack Modeling Tool

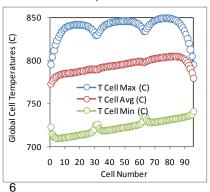
3D Model

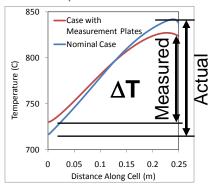
- Usage
 - Detailed 3D distribution for followup structural analysis
 - All planar flow configuration including cross-flow
- Computes distributions in entire 3D domain
 - All planar configurations: Co-flow, counter-flow, and Cross-flow
 - Multi-cell configuration (up to 50 cells)
- Computations
 - Current distribution
 - Voltage distribution
 - Thermal distribution
 - Used for FEA stress analysis
 - Species distribution
 - Heat losses

2D Model

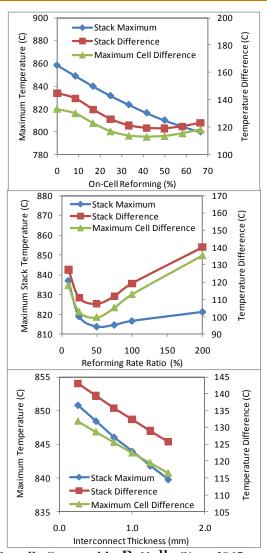
- Usage
 - Tall cell stack
 - Fast computation
 - Can be integrated to system tools
- Computes distributions along the symmetric centerline of the stack
 - Co-flow and counter-flow
 - Multi-cell configuration (up to 1000 cells)
- Computations
 - Current distribution
 - Voltage distribution
 - Thermal distribution
 - Species distribution
 - Heat losses

2D SOFC-MP Software Release


- Official 2D model released
 - NETL can distribute
- User manual for 2D model completed
 - Step-by-step instructions on installation, model simulations, solution, and postprocessing procedures
 - Detailed descriptions of sample cases, including in depth explanation of parameters in the input files
- Includes feedback from users
 - Newer version with more robust and faster iteration scheme made available because of request from PNNL users providing vertical team modeling support
- Code usage demonstrated in parametric study on stack temperature uniformity
- * More information available at the poster session



Pacific Northwest


SOFC-MP Rich Features in 2D Model

- The module can simulate different flow orientations, cell counts, cell sizes, boundary conditions, fuels, user-defined electrochemistry, reforming, and cell-to-cell variations
 - Effect of amount of on-cell reforming
 - Effect of on-cell reforming rate on temperature
 - Effect of interconnect thickness on temperature
 - Effect of local 25% fuel blockage on single cell (#32) current density
 - Effect of 2 instrumented measurement plates
 - -21% cell ΔT error from measurement plate

Proudly Operated by Battelle Since 1965

Distributed Electrochemistry (DEC) Model: Modeling SOFC Performance

Technology Challenges

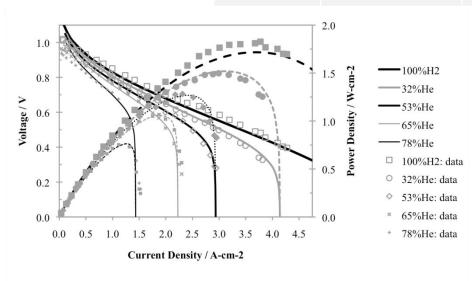
- Understand degradation in the electrodes
 - Resolve local conditions in the cell resulting from various operating conditions
 - Investigate the effect of microstructure on cell performance
 - Confidently predict global cell performance for a range of conditions
- Increase performance by advanced electrode design

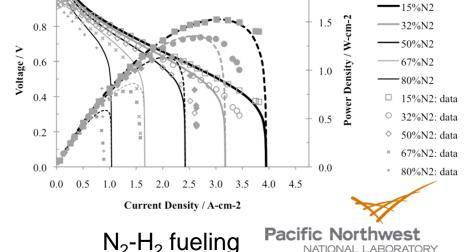
Objectives

- Develop a model to predict cell performance based on operating conditions and microstructure
 - Base the performance model on coupled electric potential, charge transfer, and reactive transport
 - Use a modeling approach that enables varying structural parameters
 - Validate the model by comparison with experimental data
 - Simulate microstructural and operational effects on cell performance

Pacific Northwest
NATIONAL LABORATORY

DEC Model: Recent Accomplishments


- Developed a 3D multi-physics model of the SOFC electrodes and electrolyte
 - Resolves the electrochemistry throughout the electrode thickness
 - Predicts the global SOFC performance based on local conditions within the electrodes
 - Includes electrode microstructures via an effective properties model
 - Allows for spatially varying microstructural and electrochemical properties
- Validated the DEC model with experimental button cell data at various fuel compositions and operating voltages
- Demonstrated the DEC model's capabilities to investigate the effects of electrode microstructure on SOFC performance
- Developed a degradation modeling framework for considering the effects of local degradation within the electrodes on the overall SOFC performance
- * More information available at poster session



Validation of DEC Model by Comparison with Experimental Button Cell Data

- Experimental data set for binary fuel [Jiang and Virkar 2003]
 - DEC Model shows good agreement with He-H₂ and N₂-H₂ systems
- Highlights model sensitivity to gas diffusion in electrodes
- Good predictions of limiting currents and peak power

Binary Fuel	Maximum Difference: DEC model to Experimental Data		
	Peak Power	Limiting Current	
$He-H_2$	7%	6.5%	
N_2 - H_2	12%	11%	

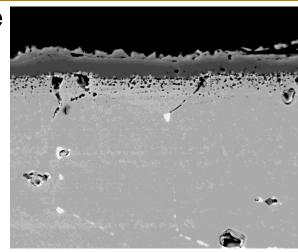
2.0

Degradation and Life Prediction of Coated Metallic Interconnects Summary

- Motivation: Ensure IC life meets the SECA life time requirement
- Goal: Use modeling to predict interconnect life with and without spinel coating under isothermal cooling and thermal cycling
- Technical Approach: Develop a combined modeling/experimental approach to enhance spallation resistance; use finite element based modeling tools to evaluate various design issues on spallation driving forces and determine the main factors influencing IC degradation in terms of spallation; and evaluate IC candidate materials

Accomplishments:

- Developed an integrated modeling and experimental approach for IC life prediction:
 - Identified and quantified spallation driving forces
 - Quantified interfacial strength
 - IC life prediction for coated and uncoated Crofer 22
 - Interfacial strength quantification for as-received and surface modified SS441

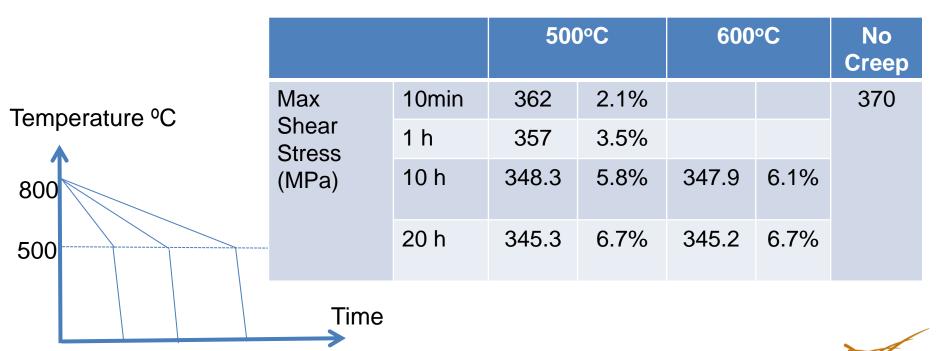

Doping Coating with Rare Earth Improves Spallation Resistance

- Model determined increase in interfacial strength between oxide scale and substrate when spinel coating was doped with Ce
 - Improvement of adhesion also observed experimentally (SECA CTP Materials team)

	Crofer 22 (0.5 mm thick)		441 Substra (1.5 mm thic		
	Bare	Bare	Mn-Co Spinel	Ce-doped Spinel	
Coating thickness (µm)	NA	NA	15	14	
Scale thickness (µm)	2.41	3.82	3.87	1.49	
Strength (MPa)	395	324	324	403	/e

Surface Modification Increases Adhesion Strength – Mechanical Polishing

- Initial surface modification studies began with the effects of mechanical polishing on scale spallation of bare specimens
- Model determined that surface quality influenced the interfacial strength
- Bear in mind: this technique increases both interfacial strength and spallation driving force
- Polishing substrate surface became a common practice prior to applying coating on specimens for experimental studies



Surface modified (polished) specimen exposed to 850C for 900h.

	441 Substrate (1.5 mm thick)			
	As- received	Surface Modified	Surface Modified	
Surface Roughness (Ra)	0.7	0.25	0.02	
Scale thickness (µm)	3.82	3.87	5.61	st
Strength (MPa)	324	394	384	196

Optimizing Cooling Profile to Reduce Spallation Driving Force

- Optimization of cooling profile helps to reduce the interfacial stress, only to a certain extent
- Benefit plateaus to about 6.8% stress reduction

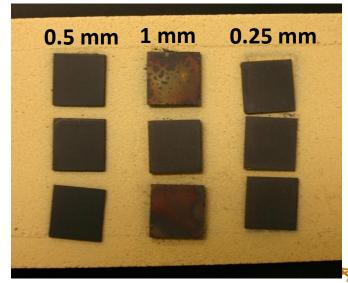
No creep 1h

10h

Cooling profile schematic

20h

Reducing IC Substrate Thickness to Reduce Driving Force


- Interfacial failure driving force can be reduced by reducing the bulk thickness of SS441
 - The thicker the substrate, the higher the driving force for spallation

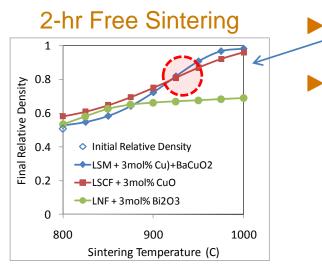
Model Predictions

Substrate thickness	1.6 mm	0.5 mm
Coating thickness	10 um	10 um
Scale (um)	Scale/441	Scale/441
2	441 MPa	361 MPa
5	487 MPa	410 MPa
10	489 MPa	463 MPa
15	485 MPa	479 MPa

^{*}Liu et al., Journal of Power Sources 189 (2009) 1044–1050

Experimental Validation

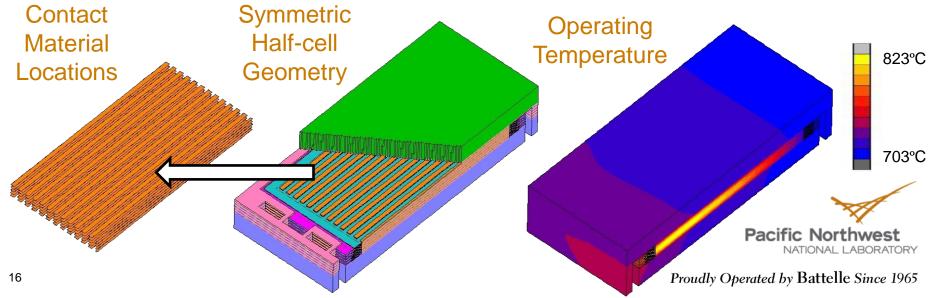
Results provided by Materials team Northwest


Contact Modeling Task Summary

- Motivation: Cathode contact layer is weak and must meet multiple design criteria
- Goal: Use modeling to understand in situ low temperature formation of the cathode contact layer and its influence on the stack's mechanical reliability
- Technical Approach: Develop FEA modeling approach to simulate the densification behavior of cathode contact materials and determine their influence on the stack thermal-mechanical stress state during formation

- Task Accomplishments:
 - Determined expected stress levels for contact layer in the cell
 - Verified reduced seal loads by load path modification
 - Implemented constitutive model for constrained sintering
 - Supported test cell development
 - Developed method to extract model input parameters from Task 1 material experiments
 - Simulated contact materials and effects of design parameters on densification in stacks

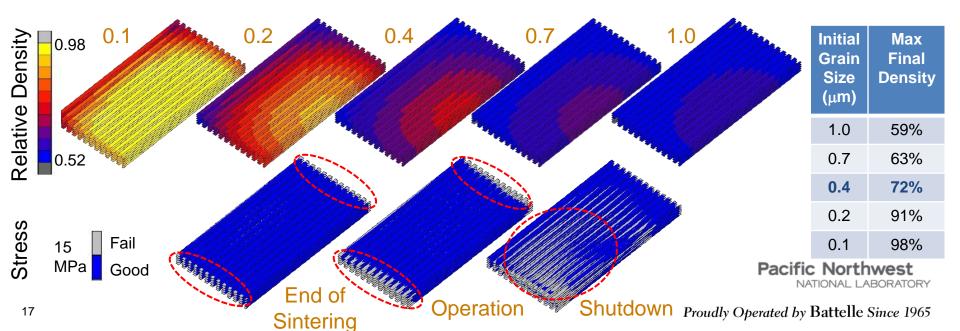
Pacific Northwest
NATIONAL LABORATORY


Contact Modeling: Realistic Multi-Cell Stack Geometry

LSCF-based contact material

- Heat treatment schedule modeled:
 - 2 hr @ 930°C
 - Operating temperature distribution
 - Shutdown to 25°C


- Stack operating conditions:
 - 400 mA/cm²
 - 97% H₂ fuel
 - 80% UF
 - 12% UA
 - 700°C furnace
- Stack temperature 703°C to 823°C with 120°C ∆T

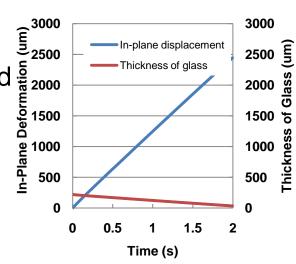


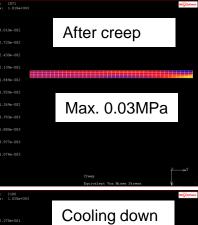
Contact Modeling: Smaller Initial Grain Size Improves Density

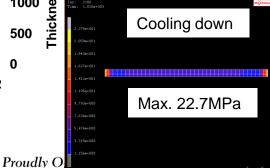
- Densification with nominal 0.4 μm grain inadequate
 - Maximum density only 72%
 - Distribution non-uniform across the cell
 - Corners and edges restricted by stiff surrounding frame; relative spring stiffness between frame and active area will be critical design parameter
- Grain size < 0.5 μm substantially improved density but geometry influence remained

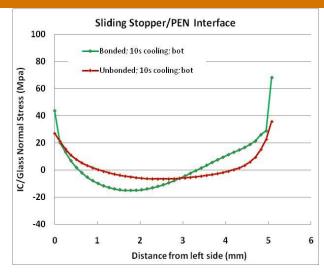
Contact Interface Stress

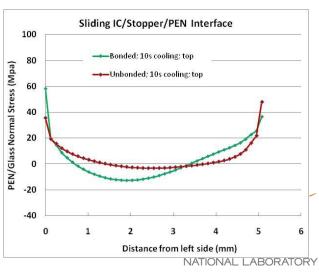
Seal Materials Modeling: Task Summary


- Motivation: To explore the behavior of seal materials at operating temperatures and better understand the interplay of material microstructure and properties on stresses and degradation
- Goal: Use modeling to assist the development of a reliable sealing system to achieve the stack-level design requirements
- Technical Approach: Develop time and temperature dependent seal models to use as building blocks in stack-level seal performance simulations and investigate the effects of various design parameters on multi-cell stacks


Seal Modeling: Predicted In-Stack Behavior of Pure Glass Sealants


- Pure glass sealant will flow out without stopper.
- The stress in the glass and its interface with IC and PEN are very small at the working temperature.
- Cooling-induced stress in the glass and its interface with IC and PEN are relative large, and potential interfacial damage will occur.
- Gap between ceramic stopper and glass will reduce the stress in the glass and interface of glass and IC/PEN.
- Scale up of cell will increase the stress level in glass as well as its interfaces with IC and PEN





Seal Modeling: Predicted In-Stack Behavior of Pure Glass Sealants with Ceramic Stoppers

- Studied the effects of ceramic stoppers on the geometric stability of the self-healing seals in a simulated stack environment using creep analysis:
 - Stoppers will help the glass seal to maintain geometry during operation
- Studied effects of various interfaces of PEN/Stopper, IC/Stopper, and Stopper/glass on the interfacial stresses upon cooling:
 - Weak interfaces between stopper and glass always lead to lower stresses on glass/PEN and glass/IC interfaces.
 - In most cases, localized high stress regions are predicted for the edge of the glass seal: possible localized failure.

PNNL Modeling Summary

- ► SOFC-MP: 2D and 3D multi-physics stack models
 - 2D Software and manual released
- DEC Model: 3D multi-physics cell model
 - Resolves the local conditions within the cell and predicts SOFC global performance from cell level electrochemistry
- Contact Modeling: Continuum sintering model suitable for stack modeling
 - Good free sintering densification of candidate materials possible for T<1000°C</p>
 - Reduced initial grain size improved densification with only a small negative impact on predicted stresses at operation and shutdown
- Interconnect Modeling and Experimentation: Integrated modeling and experimental approach for IC life prediction
 - Spallation resistance can be improved by increasing the interfacial strength between the oxide scale and substrate
 - Spallation driving force can be reduced through cooling profile optimization and by reducing IC thickness
- Seal Modeling:
 - Predicted the outflow pattern for pure glass seal with different initial glass height (volume) in PNNL leak test setup
 - Studied the possible self-healing mechanisms/driving forces for glass seal:
 - Role of pressure on crack healing rate
 - Role of gravity on healing rate for thin glass seal

Pacific Northwest

Current/Future Modeling Activities

- Simulation of long-term and transient degradation behaviors
 - DEC Model: Implement secondary reactions (degradation)
 - SOFC-MP: Include transient degradation of state variables & coupling to DEC model
- Improved accessibility to software tools
 - Transfer DEC model to open source tool (e.g. OpenFoam)
 - Transfer SOFC-MP to a more flexible framework for interface with FEA solvers beyond MSC MARC
- Contact Modeling:
 - Identify/test a specimen configuration for validation of constrained sintering simulations
 - Adapt model to other volumetric behaviors in the stack (e.g. anode reduction, seal formation, re-oxidation tolerance)
- Interconnect Modeling:
 - Quantification of interfacial strength for varying surface modified SS441
 - Life prediction for coated and surface modified SS441
- Seal Modeling:
 - Continue to quantify the self-healing mechanisms for SCN glass and develop temperature dependent constitutive models for SCN glass considering aging/ crystallization
 - Use modeling tools to virtually examine the various concepts of engineering seal design with glass/stopper sealing system in multi-cell stack