Electronic Structure Determination of La, Sr_{1-x}MnO₃ films for Solid Oxide Fuel Cell Cathodes

¹ University of Nevada, Las Vegas ² University of Würzburg ³ Helmholtz-Zentrum Berlin für Materialien und Energie ⁴ Brandenburgische Technische Universität Cottbus ⁵ Advanced Light Source, Lawrence Berkeley National Laboratory⁶ Massachusetts Institute of Technology⁷ Carnegie Mellon University

conductivity, surface activity, and stability with the electrolyte at operating temperatures (600 °C – 1000 °C).

Michael Weir^{1*}, Stefan Krause^{1,3}, Andreas Benkert², Lothar Weinhardt², Monika Blum^{1,5}, Regan Wilks³, Marcus Bär^{1,3,4}, Wanli Yang⁵, Helia Jalili⁶, Bilge Yildiz⁶, Lu Yan⁷, Paul Salvador⁷, and Clemens Heske¹

• La 3d, Mn 2p signals increase

 \rightarrow This increase may be due to the removal of C surface species

Measure the electronic structure of LSMO films under realistic SOFC

- Experiment performed in
- examination of reversible
- Reversible changes identified
- 100 nm LSMO8020/STO(100) was heated in steps of 100°C
- Temperature scale calibrated with infrared pyrometer
- background (high binding energy) changes in the first annealing step and then stays
- C 1s signal retained despite

Current Work

in situ cell design parameters:

•Heats cell up to 600 °C

- •Gas inlet may be pre-heated
- Pressures from 50 mbar to 1 bar

•Flow cell design with thin layer of gas over sample

•Primary design and construction through Univ. of Würzburg

Initial results:

XAS and XES measurements of four samples, 2 each of : •10 nm $La_{0.7}Sr_{0.3}MnO_3$ on SrTiO₃ •10 nm $La_{0.7}Sr_{0.3}MnO_3$ on $LaAlO_3$

Measurements were made in vacuo as controls

For films on the same substrate, the features are similar (XAS) or practically identical (XES)

Significant differences between films on different substrates are likely due to measuring both the film and the substrate

Summary and Future

Soft X-ray spectroscopic measurements are able to measure chemical and electronic differences in LSMO films caused by experimental variables including film thickness, substrate material and annealing conditions.

Our methods have expanded to include *in situ* measurements at elevated temperatures. Recent work includes progress toward simultaneous control of temperature and atmosphere.

Future work includes investigation of temperature-based transitions and modifications of the *in situ* gas cell leading to measurements at operating conditions.