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Introduction 
Techniques : 

Materials : 
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LaxSr(1-x)MnO3 (LSMO) is an ABO3 type perovskite, where La 
and Sr share the A-site and Mn fills the B-site. 
 
 
 
 
 
 
 
• Known symmetries include cubic, rhombohedral,  
  orthorhombic and tetragonal. 
• Sr addition changes the lattice constant and crystal  
  symmetry and increases the Mn oxidation state. 
• Sr likely segregates to the surface, forming SrO or SrCO3. 
• O2 is effectively transported through the LSMO film by the 
  movement of O vacancies. 
•LSMO films are used as cathodes for solid oxide fuel cells 
because of the combination of sufficiently high electronic 
conductivity, surface activity, and stability with the 
electrolyte at operating temperatures (600 °C – 1000 °C). 

Image from website of Trivedi group, Ohio State University 
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• Thinner films are more likely to show substrate effects 
• Significant differences in chemical composition and state 
• O 1s peak shows several different chemical environments 
• The 100 nm sample has the strongest deviations: less Mn, more La, and 

a different line shape for Sr 3d 
• No thickness dependent trends 
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Results 
Surface Chemistry: 

Changing the angle of the sample with respect to the detector allows 
measurement of different depths of the same film.  In these figures, the 
black lines represent normal surface measurements while the red lines are 
much shallower measurements.  The differences between the 
measurements indicate that the surface of this film is terminated by SrCO3. 

Film Thickness: 

ex situ Heating: 

• Experiment examines the effects of temperature cycling and annealing 
   on the films 
• ex situ heating occurred in pO2 
• C 1s signal consistently decreases 
• La/Sr ratio stays constant up to 500° and  then increases slightly by 4%  
• La 3d, Mn 2p signals increase 
This increase may be due to the removal of C surface species 
 

10nm LSMO7030/NGO(110) 

in situ Heating: 
• Experiment performed in 

vacuum 
• in situ heating allows 

examination of reversible 
changes 

• Reversible changes identified 
by STM at MIT 

• 100 nm LSMO8020/STO(100) 
was heated in steps of 100°C 
up to 800°C 

• Temperature scale calibrated 
with infrared pyrometer  

• Secondary electron 
background (high binding 
energy) changes in the first 
annealing step and then stays 
constant 

• C 1s signal retained despite 
heating 

Objective:   
Measure the electronic structure of LSMO films under realistic SOFC 
operating conditions (1 atm, 800 °C) 
 
Measurements: 
•Weak XPS signal through gasses 
•XAS and XES signals penetrate further through gas 
•Experiments use synchrotron as X-ray source 
•Advanced Light Source, Lawrence Berkeley National Laboratory 
•SXF endstation at beamline 8.0 also used in vacuo 
 
SALSA endstation: 
•Currently used for analysis of solid and in situ liquid samples 
•Beamline 8.0 
•VLS spectrometer measures energies between 120 and 650 eV  
•XPS measurements possible, particularly for solid samples 
•New in situ cell designed for high temperature and high pressure 
 
 
 
 
 
 
 
 
 

Results 

Current Work 
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in situ cell design parameters: 
•Heats cell up to 600 °C 
•Gas inlet may be pre-heated 
•Pressures from 50 mbar to 1 bar 
•Flow cell design with thin layer of gas over sample 
•Primary design and construction through Univ. of Würzburg 
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Initial results: 
XAS and XES measurements of four samples, 2 each of : 
•10 nm La0.7Sr0.3MnO3 on SrTiO3 
•10 nm La0.7Sr0.3MnO3 on LaAlO3 
 
Measurements were made in vacuo as controls. 
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For films on the same substrate, the features are similar (XAS) or 
practically identical (XES) 
Significant differences between films on different substrates are likely due 
to measuring both the film and the substrate 

Summary and Future 
Soft X-ray spectroscopic measurements are able to measure chemical 
and electronic differences in LSMO films caused by experimental 
variables including film thickness, substrate material and annealing 
conditions. 
 
Our methods have expanded to include in situ measurements at 
elevated temperatures.  Recent work includes progress toward 
simultaneous control of temperature and atmosphere. 
 
Future work includes investigation of temperature-based transitions and 
modifications of the in situ gas cell leading to measurements at 
operating conditions. 
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