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Introduction

e Solid oxide fuel cells (SOFCs) are high-efficiency energy conversion devices that operate at
600-1000°C. Fuel cell electrodes are composites of ionically conductive yttria-stabilized
zirconia (YSZ) and catalyst, typically a perovskite ceramic.

e Our understanding of the factors that lead to lower overpotentials in SOFC electrodes is
still limited, mainly because the performance is highly dependent on the electrode
microstructure. Until recently, it has been very difficult to elucidate the importance of a
single parameter (electrode active surface area, ionic conductivity, porosity, composition of
the perovskite, etc) on electrode performance.

e Infiltration method, pioneered at Penn, is becoming an increasingly popular method for
the preparation of SOFC electrodes.

e Among other advantages, electrodes prepared by infiltration are good platforms for
carrying out systematic studies on the effect of microstructure on electrode performance.

Experimental

1. Use tape casting to prepare porous YSZ scaffold:
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2. Infiltrate catalyst into scaffold using nitrate solutions (e.g. of LSF). Calcine to form the
perovskite phase.

eAdvantages of infiltration:
+ Higher electronic conductivity
+ Good thermal expansion match
+ Separate firing steps for electrolyte and perovskite
+ Catalyst not subject to high temperature during fabrication

Theoretical approach

A mathematical model has been developed to understand the performance of electrodes
prepared by infiltration of a perovskite (e.g. La,gSr,,FeO; , LSF) into yttria-stabilized
zirconia (YSZ).
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1. Slow diffusion of 0% through the perovskite film:
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 Summing up the fluxes through all film elements gives the total current. Resistance is
given as:
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2. Slow adsorption of O, onto perovskite lattice sites:
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* Resistance is given as:

p - porosity

3 w — width of fin
1 2 W m — reducibility (slope of log pO, vs 3-0)
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e Example calculations based on diffusion limitation at 973 K:

Oionic (S/cm) o'ysz (S/cm) Roder (€2 €M?) | R, (Q cm?)

La, ;Sr, ,Fe0, - YSZ 8.3-10 2.9-10°3 0.067 2.8
La, ;Sr, ,Ba0, - YSZ 3.1-10 2.9-10° 0.11 2.9
La, ;Sr, ,Ca0; - YSZ 3.8:10° 2.9-10° 0.31 3.0
La, zSr, ,MnO, - YSZ 4.0-10°8 2.9-10° 9.7 8.8

— Electrode performance is not limited by bulk diffusion as long as o._... > 10¢ S/cm.

ionic

Effect of perovskite surface area

e Initially, infiltrated electrodes consist of very fine perovskite particles coating the YSZ
scaffold. However, long operation at 973 K (or treatment at higher temperatures) causes
coarsening:

Effect of porous YSZ surface area

* YSZ porous scaffolds with different BET surface area were prepared:
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* Electrode performance is highly dependent on the porous YSZ surface area:

LSF-YSZ symmetric cells

a) after 1123 K, b) after 1373 K: Proposed mechanism:
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 As the structure coarsens, surface area decreases, which causes degradation in electrode

Film formation after 1373 K
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Effect of electrolyte ionic conductivity

e Infiltration method allows one to vary the porous electrolyte material without affecting
cathode microstructure:
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* lonic conductivity of the electrolyte affects both ohmic and non-ohmic resistance:
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