Power Generation from Solid Fuels in a Solid Oxide Fuel Cell with a Molten Antimony Anode

Abhimanyu Jayakumara, Rainer Künga, Sounak Royb, Ashay Javadekarb, Douglas J. Buttreyb, John M. Vohsa and Raymond J. Gortea.

aDepartment of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104.
bDepartment of Chemical Engineering, University of Delaware, Newark, DE 19716.

Objective: To enable facile oxygen transfer to solid carbonaceous fuel (i.e. coal, biomass) from an SOFC electrolyte using a molten antimony anode.

![Experimental Setup](image)

Operating Temperature: 973K

Reactions involved

3C + Sb\textsubscript{2}O\textsubscript{3} \rightarrow 2 Sb + 3 CO

2 Sb + 3 O2− \rightarrow Sb\textsubscript{2}O\textsubscript{3} + 6e

O2− + 4e \rightarrow 2 O

Key Characteristic: Sb (m.p. 903K) and Sb\textsubscript{2}O\textsubscript{3} (m.p. 929K) are both molten phases.

Fuel Flexibility

- **Temperature (°C):**
 - Sugar char
 - Rice starch
 - Carbon black
 - Graphite

CO\textsubscript{2} formation (a.u.):

TPR plots show that most forms of carbon reduce Sb\textsubscript{2}O\textsubscript{3} below the operating temperature of 973K.

Performance on par with H\textsubscript{2}-SOFCs

Sb anode with sugar char as fuel

Very Low Anode Impedance

![Nyquist Impedance Plot](image)

Ohmic and non-ohmic losses are those expected from ScSZ electrolyte and LSF-ScSZ cathode respectively.

► Sb Anode Impedance \(\approx 0\).

Demonstration of Carbon Fuel Consumption

Sb in C-fueled anode underwent two turnovers at a power density of 300 mW/cm2 before all the fuel was consumed. Without C fuel the anode performance falls due to Sb\textsubscript{2}O\textsubscript{3} accumulation.

Open Circuit Voltage = 0.75V for Sb/Sb\textsubscript{2}O\textsubscript{3} system.

Max. Power Density: 360 mW/cm2

“This material is based upon work supported as part of the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001004.”