

A Multi-Dimensional Micro-Scale Model for Oxygen **Reduction on LSM-YSZ Cathode**

S. Raju Pakalapati^{1,2}, Ismail Celik^{1,2}, Harry Finklea^{1,2}, Mingyang Gong^{1,2}, Xingbo Liu^{1,2}, Kirk Gerdes¹ ¹National Energy Technology Laboratory, Morgantown, WV ²National Institute for Fuel Cell Technology, West Virginia University, Morgantown, WV

Introduction

- Cathode performance limits the overall efficiency of SOFCs.
- Knowledge of the kinetics of oxygen reduction will lead to better cathode designs
- Performance of the cathode is also dependent on the microstructure.
- Oxygen reduction on LSM-YSZ cathode is known to occur through parallel pathways.
 - 2PB pathway and 3PB pathway.
- A three dimensional computational model needed for oxygen reduction on LSM/YSZ.

Model Description

- Micro-scale dynamic model for charge and mass transfer inside the cathode.
- A multi-step charge transfer reaction mechanism with parallel 2PB and 3PB pathways.

Polarization curve and the contributions from 2PB and 3PB pathways

Faradaic current (A/m³) distribution inside the cathode under polarization

• Averaged microstructural parameters obtained from reconstructed cathode using SEM images.

Reaction Mechanism:

- $(S1) \quad \frac{1}{2}O_2 + S \leftrightarrow O_{ad}$
- $(S2) \quad O_{ad} + e^- \leftrightarrow O_{ad}^-$
- $(S3) \quad O_{ad}^{-} \leftrightarrow O_{TPB}^{-}$
- $(S4) \quad O_{TPB}^{-} + e^{-} + V_{O,YSZ}^{**} \leftrightarrow O_{O,YSZ}^{x} + S$
- $(B3) \qquad O_{ad}^{-} + V_{O,MIEC}^{**} + e^{-} \leftrightarrow O_{O,MIEC}^{x}$
- $(B4) \quad O_{O,MIEC}^{x} + e^{-} + V_{O,YSZ}^{**} \leftrightarrow O_{O,YSZ}^{x} + V_{O,MIEC}^{**}$

Model Equations

Gas species transport (O_2)

$$\mathcal{E}\frac{\partial n_{O_2}}{\partial t} = \nabla \left(D_{O_2}^{eff} \nabla n_{O_2} \right) - r_{ads}$$

Coverages Transport (O, O⁻, O⁻_{TPB}) $\frac{\partial \theta_i}{\partial t} = \nabla \left(D_{\theta_i}^{eff} \nabla \theta_i \right) + r_i$

C/Air interface

Ionic current = 0, Electronic potential prescribed, Oxygen concentration prescribed, and flux of all Other species (coverages and vacancies) is zero

LSM vacancy (mol/m³) distribution in a cathode area under a current collector/ air channel corner

Oxygen concentration (mol/m³) in a cathode area under a current collector/ air channel corner

Conclusions

A multi-dimensional micro-scale model is developed for SOFC cathodes using

Vacancies Transport (C_{V,MIEC} , C_{V,YSZ})

 $\frac{\partial C_V}{\partial t} = \nabla \left(D_{C_V}^{eff} \nabla C_V \right) + r_{C_V}$

Charge Transport

Bulk Electrolyte

C/E Interface Electronic current = 0, Ionic potential prescribed, YSZ oxygen vacancy production as a function of current, all other fluxes are zero

multistep reaction mechanism and micro-structure information.

- Microstructure data is obtained from real cathodes using image analysis.
- Model predicts separate contributions from 2PB and 3PB pathways to the total current.
- Model also resolves the effect of microstructure on the local distributions.

ACKNOWLEDGEMENT

This technical effort was performed in support of the National Energy Technology Laboratory's on-going research in the area of Fundamental Transfer Processes in Solid Oxide Fuel Cells under the RDS contract DE-AC26-04NT41817. The microstructure images are provided by Dr. Paul Salvador's research group.

CONTACT

Dr. Ismail Celik, MAE Department West Virginia University, Morgantown, WV. Ph: 304 293 3209 Fax: 304 293 6689 Email: ismail.celik@mail.wvu.edu URL: http://nift.wvu.edu/

Microstructure Properties Cathode Reconstruction Procedure: 4.4E+06 4.2E+06 4E+06 3.8E+06 3.6E+06 3.4E+06 6 μm 3.2E+06 3E+06 2.8E+06 2.6E+06 2.4E+06 2.2E+06 2E+06 1.8E+06 400000 LSM-pore interfa **Courtesy of Salvador et al., 2010.** 1.4E+06 1.2E+06 1E+06 PENNSTATE

NATIONAL ENERGY TECHNOLOGY LABORATORY

