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To improve the total performance of solid oxide fuel cells (SOFCs), it is desirable to reduce the losses on the cathode side of the cell. The oxygen reduction reaction (ORR) takes place in the
SOFC cathode and it is rather complex; it involves a variety of sub-reactions, such as surface adsorption, dissociation, election transfer, incorporation, and bulk diffusion. Although a considerable
amount of effort has been expended in correlating processing / microstructural features to cathode performance, there is relatively little known about the fundamental properties of oxide surfaces,
how they are affected by surface chemistry, and how they are related to overall cathode activity. We use thin film approaches to isolate the surface response from the bulk properties and to control
structural perturbations / surface chemistry. The aim is to understand the fundamental surface activity of the most commonly used cathode material La, ;Sr, sMnO; (LSM). Here we investigated the
relative contribution of the native surface and of the grain boundaries intersecting the surface to the chemical surface exchange of LSM thin films. This research shed light on the activity of
Qanoscale infiltrates used as surface modifications to improve cathode performance.
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Project Objectives

Overarching Goal:

Use thin films to probe the fundamental surface chemistry/structure and their
relationship to SOFC cathode reaction activity.
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