
Thermomechanical Degradation 
Behavior of SOFC Materials

Abstract:
We have developed testing techniques, such as cyclic loading dilatometry (CLD) and creep beam bending (CBB), to measure the 
thermomechanical properties of individual ceramic components as a function of relative density and microstructure (i.e. porosity and grain 
size) up to typical processing and operation temperatures. SOFC cathode materials such as LSCF, LSCF-GDC, LSM, LSM-YSZ were 
analyzed during this study. Material sintering behavior (e.g., shrinkage, warpage, densification) and thermomechanical responses (e.g., 
viscosity, Poisson’s ratio) were determined using CLD and CBB. A thorough understanding of the viscoelastic behavior of these systems over 
the range of processing and operational temperatures will enable prediction of the mechanical and microstructural stability of SOFCs and 
accompanying cell efficiency and lifetime.
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Strain Rate of SOFC Materials 
During Sintering

Cast Tapes
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CLD sample CBB sample

 2 x 2 x 6 mm  70 x 10 x 0.3 mm

SOFC Fabrication

Summary

 Thermomechanical behavior (strain rate, viscosity) of tape cast 
SOFC materials was investigated using CLD and CBB.

 At 1150°C, the viscosities of the LSCF-GDC, LSCF, LSM, and 
LSM-YSZ are 21, 14, 20, and 5 GPa·s, respectively.

 The stress states in the SOFC stacks will be evaluated with the 
stress model using the measured thermomechanical properties 
(i.e., strain, viscosity, modulus) of the individual materials.

 Degradation processes will be evaluated by measuring 
viscoelastic properties as a function of operating conditions (i.e., 
time, temperature, atmosphere) .
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Measurement of Viscoelastic Properties 
by Creep Beam Bending (CBB) 
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Stress Model of SOFCs
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δ: deflection, δ(dot): deflection rate, ρ: density, L: span width, 
x: distance from center, E: Young’s modulus, h: thickness, 
g: gravitational constant, EP: uniaxial viscosity

Microstructure of SOFC Materials
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LSM-YSZ (Pellet)
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 In-situ observation of creep as a function of:
• Sintering conditions – time, temperature, ramp rate
• Loading profile
• Lamination conditions
• Material characteristics – composition, relative density

Prediction of SOFC 
system
-Stress during co-firing 
and operation

-Failure/Lifetime
-Efficiency 
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Measurement of Viscoelastic Properties by 
Cyclic Loading Dilatometry (CLD)
 Unique capability which can be used to determine viscoelastic properties 

(i.e. viscosity, strain and strain rate) of materials as a function of:
Sintering conditions – time, temperature, heating rate, load
Component  characteristics - relative density, grain size

Thermo-mechanical 
analyzer (TMA)
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Research objectives

Thermo-
mechanical 

stress 
model

Thermomechanical 
properties of SOFC 
materials
-Strain / Strain rate
-Viscoelastic (E, η)

Degradation mechanism of SOFCs
The consequences of thermal stress and redox cycles lead to 
performance degradation, limiting SOFC lifetimes.

Thermomechanical

Microstructural
Electrochemical

•Delamination/cracking at interfaces
•Coarsening due to thermal energy
•Thermal expansion mismatch
•Decomposition of cathode/anode materials
•Chemical reaction with electrolyte
•Poisoning (e.g., S, P, As, Cr, etc.)

Thermomechanical properties of SOFCs
Thermal stresses induced by mechanical property differences between 
constituent materials can cause degradation between layers of SOFCs 
during thermal cycling. By measuring thermomechanical properties such 
as strain and viscosity of the individual components we can model the 
stress states in the SOFCs during processing and operation. 
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Where:        is the strain rate under load
is the axial free strain rate 
is applied uniaxial stress
is uniaxial viscosityη
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CLD of LSCF-GDC

CBB of LSCF-GDC

LSCF-GDC(75%ρth)  LSCF(70%ρth)

LSM-YSZ(66%ρth) LSM(75%ρth)

5 µm

where σ: stress, E: elastic modulus,               
η: viscosity, t: time, ∆ε: elastic mismatch, 
x: layer thickness, ρ: density, d: grain size ),( df ρη =

SOFC module structure

Cathode current collecting layer
Cathode active layer
Electrolyte layer
Anode active layer
Anode current collecting layer

Stress between 
layers

1
2

Prior studies on SOFC sintering stress evolution inform 
evaluation of thermomechanical degradation

0.00 0.25 0.50 0.75 1.00
0

20

40

60

80

100 • 850oC
• 950oC
• 1050oC
• 1150oC
• 1250oC
• 1350oC
• 1400oC, 20min
• 1400oC, 40min

LSCF-GDC

Lo
ad

 in
du

ce
d 

st
ra

in
 ra

te
 (1

/M
s)

True stress (MPa)

ρ=57%

ρ=52%

ρ=86%

0 200 400 600 800 1000 1200 1400

50

60

70

80

90

100

Re
la

tiv
e 

de
ns

ity
 (%

)

Temperature (oC)

 LSCF-GDC
 LSCF
 LSM-YSZ
 LSM

ρ=87%

ρ=96%

ρ=94%
ρ=50%

ρ=56%

'
'

)'()'(
1

exp
1

)( 21
0

1
1 dt

dt
tdtt

mn
mn

mn
Et

t ελλσ ∆






 −

+
+

−
+

= ∫

η
λ E

E
En

x
xm === ,,

2

1

2

1


	Slide Number 1

