

Electrodeposited Mn-Co Alloy Coating For SOFC Interconnects

H.A. McCrabb¹, T.D. Hall¹, J.W. Kell¹, S. Snyder¹, H. Zhang², and X. Liu², E.J. Taylor¹

¹Faraday Technology Inc., 315 Huls Dr., Clayton, OH 45315, USA

²West Virginia University, Dept. of Mechanical and Aerospace Eng. ESB, Morgantown, WV, 26506, USA

Overall Objective

Develop, optimize & validate an inexpensive manufacturing process for coating metallic SOFC interconnects with Co and Mn.

Introduction

Reducing SOFC operating temperatures below 1000°C has permitted less resistive and expensive ferritic stainless steel interconnects to replace ceramic materials. However, even specially developed ferritic alloys operated at elevated temperatures for lengthy periods of time form a chromia scale that increases the interconnect resistance and results in chrome diffusion from the interconnect to the cathode that causes a reduction in cathode performance. One attractive method to resolve the chromia scale growth and diffusion issues is to electrodeposit a Mn-Co alloy coating onto the interconnect surface and subsequently oxidize it to $(Mn,Co)_3O_4$.

Under funding from the Department of Energy, Faraday Technology and WVU demonstrated that the electrodeposition process can produce Mn-Co alloy coatings with adequate adhesion after 2000 hrs at 850°C for specific compositional ranges and that a 3 µm coating is sufficient to minimize chrome diffusion to the surface after 500 hrs at 800°C in air. Furthermore, a preliminary economic assessment, based on a batch manufacturing process, suggests that the pulse/pulse reverse electrodeposition technology can meet the Department of Energy's high volume target of 1,600,000 plates per annum at a cost of ~\$1.23 per 25 cm x 25 cm coated interconnect.

Previous Accomplishments

Test Matrix for Samples Undergoing a 500 hour Soak at 800 °C

Sample No.	Deposit Thickness (µm)	% Co Composition Before 800 °C Bake	% Composition After 800 °C Bake
332	3	65	40
333	7	65	40
334	10	65	40
335	3	80	85
336	7	80	85
337	10	80	85
338	3	78	57
339	7	78	57
340	10	78	57

Results

Test Matrix for Samples Undergoing a 2000 hour Soak at 850 °C

		Current density (mA	Forward On-time	Reverse On-time	Off-time	Frequency	Exp't Time
Trial No.	Temp (°C)	cm ⁻²)	(mS)	(mS)	(mS)	(Hz)	(min)
1001	30	200	9	N/A	1	100	8.8
1002	30	150	9.7	0.3	N/A	100	7.7
1003	50	150	9.7	0.3	N/A	100	8.1
1004	50	200	9	0.3	0.7	100	5.6
1005	70	150	9	N/A	1	100	5.2
1006	50	200	9.7	0.3	N/A	100	10.6

SEM/EDS Results for Samples Undergoing the 2000 hour Soak at 850 °C

• Is an inexpensive manufacturing process for SOFC interconnect coatings

Milestones				
Fiscal Year	Title	Planned Completion	Percent Complete	
2011	1. Design/modification of 10" x 10" electrodeposition cell	May 2011	100%	

plates per annum at a cost of ~\$1.23 per 10" x 10" coated interconnect. ^(3%) Plating Line (0%) Water (42%) 🗆 Labor (1%) Energy

Current cost analysis of coating process based upon batch manufacturing of 1,600,000

(51%) Cobalt Sulfate (3%) Managnese Sulfate (0%) Boric Acid (0%) Ammonia Sulfate

Conclusions/Future Work

Conclusions

- FARADAYIC Process allows for non-line-of-sight deposition of a wide range of compositions and surface structures using a single plating bath
- Initial ASR and crystallinity analysis showed that the as-deposited thickness/composition had little effect on performance after a 500 hr heat cycle
- 3µm thickness is capable of minimizing Cr diffusion for 500 hr testing
- Based on batch manufacturing, the DOE's high volume target of 1,600,000 plates per annum at a cost of ~\$1.23 per 25 x 25 cm interconnect

Future Work

- Determine plating parameters effect on chromium and oxygen diffusion
- Determine plate uniformity over large area flat T441 substrates

2011	2. Long-term high temperature, thermal evaluation	September 2011	33%
2011	3. Process development for 4"x4" planar interconnects	September 2011	15%
2012	4. Process development for 4"x4" pattern interconnects	June 2012	0%
2012	5. Long-term on-cell performance evaluation	August 2012	0%
2012	6. Qualification/demonstration of IC in single cell test rig	September 2012	0%

Modified FARADAYIC Electrodeposition Cell for coating patterned interconnect substrates ranging in size from 1"x1" to 10"x10".

• Verify dual-sided plating flexibility • Coat pattern interconnect – Demonstrate coating uniformity and composition • Testing in single cell and short stack SOFC systems

Acknowledgements

This material is based upon work supported by the Department of Energy under Grant No. DE-SC0001023 . Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the DOE.

Principal Investigator: Heather McCrabb, Company Name: Faraday Technology, Inc., Address: 315 Huls Drive, Clayton, OH 45315, Phone: 937-836-7749, E-mail: heathermccrabb@faradaytechnology.com, Company website: faradaytechnology.com