Optimization of Mn-Co-O Spinel Spray Coatings for SOFC Applications Using The Design of Experiment Method

Jung Pyung Choi, Jeffry W. Stevenson, and Y.S. Matt Chou Fuel Cell, P.O.Box 999, Pacific Northwest National Laboratory, WA 99352, USA

Proudly Operated by Battelle Since 1965

Contributior

33.36

22.56

2.06

15.21

9.96

16.84

100.00

12 43 SEI

Introduction

Ferritic stainless steel interconnects are generally used in planar type SOFC stacks, due to their low-cost, chromia scale-forming behavior, and good thermal expansion match to other stack components. However, volatile Crcontaining species, which originate from the oxide scale, can poison the cathode material in the cells and subsequently cause power deterioration in the device. A conductive MnCoO spinel coating has been developed for preventing cathode poisoning and to provide low electrical resistance in SOFC stacks. It is essential that the spinel coating be sufficiently dense to block the Crcontaining species volatilization, so it is important to develop an optimized process for fabricating the coatings. This paper will summarize development of an ultrasonic spray coating method and optimization of the process using design of experiment methodology with Taguchi and ANOVA analysis. Using spray parameters obtained from the DOE optimization, dense spinel layers with about 2-micrometer thickness have been fabricated. The results of this work demonstrate the possibility of automated mass production of dense conductive spinel-coated interconnect materials.

Wide Mode

Sample #

9

10

11

12

13

14

15

Thickness (µm)

3.11

3.31

3.92

3.48

12.16

8.03

3.52

2.96

5.06

4.23

2.85

4.08

2.62

3.78

2.43

3.69

Coating Result

Calculation Result

DoE : Governing equation

Objective

Prevent Chromia species evaporation and show conductivity in between $6m\Omega^*Cm^2$ and $20m\Omega^*Cm^2$ range during long term operation at high temperature. Dense thin layer coating.

Design of Experiment

Factors and Levels

Factors	level1	level2	level3	level4
Viscosity	37 cP	17 cP	9 cP	5 cP
Coating speed	40mm/sec	60mm/sec	80mm/sec	100mm/sec
Head height	15mm	25mm	35mm	45mm
Ink feeding rate	0.5ml/sec	1ml/sec	1.5ml/sec	2ml/sec
Air flow rate	30ml/sec	40ml/sec	50ml/sec	60ml/sec

Narrow Mode

	13
зки X2,000 10мm 11 36 AUX	20kU X4,000 5mm
10	14
ðkU X2,000 10мm 11 36 AUX	20kU X6,000 2µm

16

Porosity area %

6.87

18.80

12.90

7.36

17.95

27.88

7.73

2.16

28.33

20.96

13.62

7.47

3.77

2.13

6.38

16.25

15

Used material

(a)

0.17115

0.13265

0.098

0.0903

0.1593

0.1134

0.0912

0.0771

0.13225

0.094

0.076

0.05975

0.098

0.0756

0.0564

0.0518

Х6,000 2мт 12 36 А

A	Viscosity	3	5.40	0.12	0.04	0.66
В	Coating speed	3		0.08	0.03	0.45
С	Head height	3		0.01	0.00	0.04
D	Ink feeding rate	3		0.05	0.02	0.30
E	Air flow rate	3		0.04	0.01	0.20
Error		1		0.06	0.06	
Total		16		0.36		
0.75						
0.75	•					

symbol Process Parameter DOF Correction sum of Mean

Narrow Mode

symbol	Process	DOF	Correction	sum of	Mean	F	Contribution
	Parameter		Factor	square	square		percentage
А	Viscosity	3	4.37	0.15	0.05	-0.54	49.69
B	Coating speed	3		0.18	0.06	-0.64	58.84
С	Head height	3		0.04	0.20	-0.16	14.88
D	Ink feeding rate	3		0.00	0.00	-0.01	1.12
E	Air flow rate	3		0.02	0.01	-0.07	6.33
Error		1		-0.09	-0.09		-30.85
Total		16		0.30			100.00

Jung Pyung Choi

Pacific Northwest National Laboratory P.O. Box 999, K6-28 Richland, WA 99352 (509) 375-2120

ing rate	Air flow rate		28kU X6+888 2,Mm 12 36 AUX	20kU X4,000 5мm 11 36 AUX	20kU X6,000 2mm 11 36 AUX
	1	Sample #	Thickness (µm)	Used material	Porosity area %
	2			(g)	
	3	1	24.43	0.413	14.12
, [<u>с</u> Д	2	18.92	0.29085	16.78
Г 1	-т Л	3	13.69	0.2058	21.85
•	4	4	11.34	0.1827	29.35
•	כ ר	5	33.68	0.3639	28.29
	Z	6	2.35	0.249	6.10
-	1	7	3.21	0.1914	4.25
	2	8	2.39	0.1551	0.88
	1	9	22.76	0.28075	22.98
-	4	10	17.78	0.20725	17.84
	3	11	7.49	0.154	22.68
) -	3	12	4.10	0.1305	24.24
	4	13	6.29	0.2238	9.79
Ļ	1	14	3.57	0.1654	2.98
6	2	15	6.16	0.1278	9.68
		16	3.21	0.1008	0.21

Orthogonal Array

						2014 X2 000 10m 11 26 0UX	
ample #	Viscosity	Coating speed	Head height	Ink feeding rate	Air flow rate	20k0 x2,000 10mm 11 36 AUX	20k0 X2,000 10Mm 11 36 HUX 20kU X6,000 2Mm 12 36 HUX
1	1	1	1	1	1	Sample #	Sample # Thickness (µm)
2	1	2	2	2	2		
3	1	3	3	3	3	1	1 24.43
4	1	4	4	4	4	2	2 18.92
5	2	1	2	3	4	3	3 13.69
6	2	- 2	- 1	4	3	4	4 11.34
7	2	2	т Д	1	2	5	5 33.68
, Q	2	<u>л</u>	2	2	1	6	6 2.35
0	2	4	5 2	Ζ Λ	1 2	7	7 3.21
9	5 2	1	5	4	2	8	8 2.39
10	3	2	4	3	Ţ	9	9 22.76
11	3	3	1	2	4	10	<i>10</i> 17.78
12	3	4	2	1	3	11	11 7.49
13	4	1	4	2	3	12	12 4.10
14	4	2	3	1	4	13	13 6.29
15	4	3	2	4	1	14	14 3.57
16	4	4	1	3	2	15	15 6.16
						16	16 3.21

L'16

Acknowledgements

The U.S. Department of Energy's National Energy Technology Laboratory (NETL) funded the work summarized in this paper as part of the Solid-State Energy Conversion Alliance (SECA) Core Technology Program. Battelle Memorial Institute operates PNNL for the U.S. Department of Energy under Contract DE-AC06-76RLO1830.

FILE NAME | FILE CREATION DATE | ERICA CLEARANCE NUMBER

