

NATIONAL ENERGY TECHNOLOGY LABORATORY

Office of Fossil Energy Fuel Cell Program Solid State Energy Conversion Alliance (SECA) Clean Economic Energy for a Carbon Challenged World

July 27, 2010

Dr. Shailesh D. Vora

Technology Manager, Fuel Cells
National Energy Technology Laboratory
United States Department of Energy

SECA Mission

- Enable the generation of efficient, cost-effective electricity from domestic coal with near-zero atmospheric emissions of CO₂ and air pollutants (99% CO₂ capture) and minimal use of water in central power generation applications.
- Provide the technology base to permit grid-independent distributed generation applications.

60% Efficiency (Coal HHV)

≥ 99% CO₂ Capture Environmental: $<0.5ppm\ NOx$, $low\ H_2O\ use$

Low Cost, similar footprint to IGCC

Modular Technology Fuel-Flexible: Syngas, NG, H₂, Diesel, etc.

SECA Program Structure

Core

Program

NATIONAL ENERGY TECHNOLOGY LABORATORY

Intellectual Property

Cornerstone of the Alliance

Industry Teams Develop Proprietary Technologies

Non-Exclusive Licenses

Exceptional Circumstance to Bayh-Dole Act

- Promotes collaboration
- Limits research redundancy
- Technology solution not "locked up"

Fossil Energy Fuel Cell Program SECA Budget – History

Fossil Energy Fuel Cell Program SECA Budget – FY10 \$50MM

Industry Teams & Major Subcontractors

2010 SECA Core Technology & Other Partners

Solid State Energy Conversion Alliance

DOE's Office of Fossil Energy Advanced (Coal) Power Systems Goals

- 2010:
 - 45-47% Efficiency (HHV)
 - 99% SO₂ removal
 - NOx< 0.01 lb/MM Btu
 - 90% Hg removal
- 2015:
 - 90% CO₂ capture
 - <10% increase in COE with carbon sequestration</p>
 - Multi-product capability (e.g, power + H₂)
 - 60% efficiency (measured without carbon capture)

SECA Coal-Based Systems Atmospheric IGFC near-zero water requirement (99% carbon capture, 54% efficiency)

SECA Coal-Based Systems Pressurized IGFC near-zero water requirement (99% carbon capture, 61% efficiency)

Impact of Efficiency on COE

Advanced Power Systems With CO₂ Capture, Compression and Storage

	PC Baseline	IGCC Baseline	IGFC Atm	IGFC Pressure
Efficiency HHV (%)	28.4	32.6	51.1	57.0
Capital Cost \$/kW	3,570	3,330	2,150	2,100
Water Withdrawal gpm/MW _{net}	10.7	18.3	2.5	1.8
Levelized Cost-of-Electricity ¢/kW-hr	15.0	15.1	10.8	10.3

Sources: Cost and Performance Baseline for Fossil Energy Plants, Volume 1, Revision 2 DRAFT, 2010 Anticipated Release Analysis of Integrated Gasification Fuel Cell Plant Configurations, DRAFT, 2010 Anticipated Release

NETL R&D Impacts on Baseload LCOE in Mid CO₂ Tax Case*

*\$18/metric ton in 2012 - \$43/metric ton in 2030 Source: EIA NEMS AEO2009 Results

Representative Foot Print Comparison: IGFC & IGCC

IGFC - 53 Acres

IGCC - 55 Acres

 A similarly sized IGCC and IGFC will be comparable in real estate requirement. Provided by:

resources & energy

SECA Program Milestones – 2010

(OMB Performance Assessment Rating Tool)

- Stack Cost \$175/kW
 - 2007 Dollar Basis
- Power Block \$700/kW
- Maintain Power Density with Increased Scale ~ 300mW/cm2

Driving Down Costs For Fuels Cells (Order of Magnitude Cost Reduction)

Industry Teams Test Results

2005-2007 Test Results	Size	Efficiency	Degradation	Test Duration	System Cost
Aggregate Team Performance	3 – 7 kW	35.4 – 41%	~0 to 3.6%/1,000 hours	>1500 hours	\$1,267 - \$1356/kW
2008-2009 Test Results	Stack Size ≥10 kW	IGFC Efficiency	Degradation <4%/1,000 hrs	Test Duration	IGFC Power Block Cost
FuelCell Energy	11 KW peak (2 Stacks)	> 50%	1.7% and 2.6% per 1,000 hours	>5000 hours	\$1045/kW
Siemens Energy	10 kW	> 50%	~0	>5000 hours	\$1083/kW

Costs in 2007 \$

FuelCell Energy 64 cells 550 cm² active area

> Siemens Energy 24 Delta8 Cells 4 Bundles (6 cells each)

Voltage, Power Density, and Size by Year

- Higher power density implies lower cost
- Higher cell voltage leads to higher efficiency
- No adverse effect of cell size on performance

I'll see what I can dig up for this... Travis Shultz, 7/22/2010 TRS3

Solid State Energy Conversion Alliance Fuel Cells Technology Timeline

SECA Fuel Flexibility

SOFC Systems can produce power from many fuels

Delphi Auxiliary Power Unit Demos

Commercial in 2012

Pathway to Coal Plants

Gain operational experience

Develops infrastructure for fuel cell stack manufacture

Delphi's diesel SECA APU demonstrated

by Peterbilt and Daimler

SOFCs in Unmanned Undersea Vehicles (UUVs)

<u>21UUV</u> (2-5 kW)

- Fisher-Tropsch & Logistics Fuels
- SECA Stacks and Blower
- Naval Undersea Warfare Center, Division Newport, (NUWCDIVNPT) successfully tested SECA SOFCs in extreme conditions. Used SECA Stacks (2 Developers) and SECA developed High Temperature Blower.
- SOFC technology has the potential to greatly increase UUV mission time compared with current battery technology.
- Although SECA has a coal-based, central generation focus, spin-off applications are encouraged. Military applications like UUVs provide operating experience and independent validation for SECA.
- Cost and operational lifetime are not necessarily major concerns for military applications, as long as new mission capability can be delivered.

SECA Research Priorities

Gas Seals	 Glass and Compressive Seals Compliant Seals Self-healing Materials High Temperature Refractive Seal 		
Failure Analysis	 Models with Electrochemistry & EMF Define Operating Window (Not possible experimentally) Structural Failure Analysis & Design Criteria (ASME) 		
Cathode performance	 Understand Mechanism Ad-atom Modification of Surfaces Modification through Infiltration 		
Interconnect	 Coatings Electrode to Interconnect Interface - Contact Material 		
Anode / fuel processing	 Establish Fuel Specification Characterize Thermodynamics/Kinetics/ Contaminants 		
Heat Exchangers/ High Temperature Blowers	Cost and ReliabilityDesign Guidelines		

For More Information on SECA...

Websites:

www.netl.doe.gov www.fe.doe.gov www.grants.gov

CDs available from the website

- •10th Annual SECA Workshop Proceedings
- •Fuel Cell Handbook (7th ed.)

Dr. Shailesh D. Vora
Technology Manager, Fuel Cells
National Energy Technology Laboratory
U. S. Department of Energy
(Tel) 412 386-7515
(Fax) 412 386-4822
shailesh.vora@netl.doe.gov

