Development of Cathode Contact Materials for SOFC

J.W. Stevenson, G.G. Xia, Z. Lu, X. Li, Z. Nie, T. Oh, and J.D.Templeton

Pacific Northwest National Laboratory Richland, WA 99352

July 27-29, 2010 11th Annual SECA Workshop Pittsburgh, PA

Cathode/Interconnect Contact Materials

Cathode/Interconnect Contact Materials

Requirements:

- High electrical conductivity to reduce interfacial electrical resistance between cathode and interconnect
- Chemical and structural stability in air at SOFC operating temperature
- Chemical compatibility with adjacent materials (perovskite cathode, interconnect coating)
- Adequate mechanical strength and bonding to adjacent components
- Low cost materials and fabrication
- Challenges:
 - Low processing temperature during stack fabrication (800-1000°C)
 - Low density results in low intrinsic strength and bond strength, reduced conductance
 - Brittle nature of ceramics; Cost/volatility of noble metals
- Goal:
 - Develop cathode/interconnect contacts with <u>low electrical resistivity</u> and <u>increased mechanical strength</u>
 - Modeling results suggest strengthening of contacts can relieve
 - stresses on seals

3

Area Specific Resistance (ASR) Measurements

Conventional Contact Pastes: LSM, LSCM, LNF and LSCF

Ę

20kU X1,000 10Am 095363d Conventional contact layers exhibit low intrinsic strength and/or bonding strength

20µm

6

Electron Image 1

Approaches

Sintering Aids

Reduce the sintering temperature of contact materials to obtain increased density/conductance/strength

Reaction-Sintering

- Similar to process used to prepare MnCo spinel coatings for steel interconnects
- Contact material precursor powder contains multiple phases, which react during stack assembly to form a conductive single phase
- Enthalpy of reaction provides additional driving force (besides surface energy reduction) for densification

Transition Layers

- Apply to cathode and/or interconnect coating to enhance bond strength of contact material
- Used in conjunction with either of above approaches

Approaches

Sintering Aids

Reduce the sintering temperature of contact materials to obtain increased density/conductance/strength

Reaction-Sintering

- Similar to process used to prepare MnCo spinel coatings for steel interconnects
- Contact material precursor powder contains multiple phases, which react during stack assembly to form a conductive single phase
- Enthalpy of reaction provides additional driving force (besides surface energy reduction) for densification

Transition Layers

- Apply to cathode and/or interconnect coating to enhance bond strength of contact material
- Used in conjunction with either of above approaches

Effect of Sintering Aids on LNF-60/40: Sintering Activity

NATIONAL LABORATORY

Effect of Sintering Aids on LNF-60/40: Electrical Resistance

Minimal improvement in density, bond strength

Cross-section SEM images of the samples after the contact ASR measurements: (a) LNF only, (b) LNF+1mol% Bi_2O_3 , (c) LNF+3mol% Bi_2O_3 , and (d) LNF+5mol% Bi_2O_3 .

Effect of Sintering Aids on LSM-20: Sintering Activity

Dilatometric measurements: Constant heating rate of 3°C/min Pacific Northwest

Effect of Sintering Aids on LSM-20: Electrical Resistance

Minimal improvement in density, bond strength

Sintering Curves of LSCF-6428 with Various Additives

3 mol% additions

Pacific Northwest

Sintering Curves of LSCF with Various Amounts of CuO Additions

LSCF with infiltrated CuO did not show significant difference of sintering activity with powders prepared by mixing LSCF with CuO

Contact ASR Results of LSCF with Sintering Aid CuO (441-0.02MC|LSCF-CuO|LSCF)

Will perform SEM to evaluate densification, bonding

Approaches

Sintering Aids

Reduce the sintering temperature of contact materials to obtain increased density/conductance/strength

Reaction-Sintering

- Similar to process used to prepare MnCo spinel coatings for steel interconnects
- Contact material precursor powder contains multiple phases, which react during stack assembly to form a conductive single phase
- Enthalpy of reaction provides additional driving force (besides surface energy reduction) for densification

Transition Layers

- Apply to cathode and/or interconnect coating to enhance bond strength of contact material
- Used in conjunction with either of above approaches

Reaction Sintering

Successfully used in fabricating MnCo spinel coatings

 $MnO + Co + 3.5O_2 \rightarrow 2(Mn_{0.5}Co_{0.5})O_4$

Driving force for densification:

- Reduction of surface energy (~75 J/mol)
- Enthalpy of formation (~500 kJ/mol)
- 2 methods:
 - Oxidation/Reduction
 - Reduction of complex oxide to binary oxides, metals
 - Re-oxidation to simultaneously densify coating and form complex oxide
 - Direct fabrication from precursor oxides and/or metals
 - Single oxidation heat treatment

Primary systems of interest

Reaction sintered (Ni,Co)O_x with fillers (tailor CTE, reduce cost)

Reaction sintered Mn_{1.5}Co_{1.5-x}Cu_xO₄

Reaction-Sintered Ni-Co Oxide (Ni:Co=1:2)

Reaction Sintered (Ni,Co)O_x

- Reduced (Ni, Co) O_x
 - 5 compositions with Ni: Co=1:2, 1.25:1.75, 1.5:1.5, 1.75:1.25 and 2:1
- Characterization
 - Phase analysis (XRD)
 - CTE (Dilatometry)
 - Electrical Conductivity
 - ASR
 - Microstructure
 - Mechanical Strength
- Approach:
 - Select optimum (Ni,Co)O_x composition
 - Add alloying elements if needed for higher conductivity
 - Add fillers to reduce cost; also can adjust CTE (if needed)

XRD of Ni-Co oxides

- Powders with various Ni:Co ratios were synthesized by GNP process
- Powders were calcined at 850C for 5h, then attrition-milled for 7h
- The majority of the powder is (Ni,Co)O

CTE of Ni-Co Oxides

Will investigate addition of fillers to reduce CTE and cost

ASR results of NiCo oxides contact layer with various Ni:Co ratios

Time, h

Abnormal behaviors for Ni2Co and NiCo oxides were observed, with current density over 0.1A/cm² resulting in oscillating ASRs.

Pacific No

NATIONAL LABORATORY

New Compositions in Mn-Co-Cu System

Precursor	Compositions Mn:Co:Cu	Current Status
Oxide Powders	1.5:1.41:0.09 (3mol% Cu) 1.5:1.35:0.15 (5mol%Cu) 1.5:1.2:0.3 (10mol%Cu) 1.5:1.05:0.45 (15mol%Cu)	Powder synthesis and reduction
Metal Mixtures	Same as oxide powders	Ball milling

Characterization: Phase analysis (XRD) CTE (Dilatometry) Electrical Conductivity ASR Microstructure Mechanical Strength Approach: Select optimum composition, investigate fillers to reduce cost and adjust CTE (if needed)

XRD of dense bars of Mn_{1.5}Co_{1.5-x}Cu_xO₄ Oxides after sintering shrinkage tests

Intensity (cps)

Non-spinel peaks (CuO_x) appear when x=0.45

CTE Curves of $Mn_{1.5}Co_{1.5-x}Cu_xO_4$ Oxides

SEM Images of Reduced Mn_{1.5}Co_{1.5-x}Cu_xO₄ Powders as Contact Pastes (800°C for 100hrs)

ASR Test Results for Mn-Co-Cu Contacts

30

Approaches

Sintering Aids

Reduce the sintering temperature of contact materials to obtain increased density/conductance/strength

Reaction-Sintering

- Similar to process used to prepare MnCo spinel coatings for steel interconnects
- Contact material precursor powder contains multiple phases, which react during stack assembly to form a conductive single phase
- Enthalpy of reaction provides additional driving force (besides surface energy reduction) for densification

Transition Layers

- Apply to cathode and/or interconnect coating to enhance bond strength of contact material
- Used in conjunction with either of above approaches

Transition Layer to Enhanced Bonding Strength between Cathode and Contact Layer

•Approach: Co-sintered transition layers may help to increase bonding strength between interconnect

•Example: Co-sinter thin layer of contact material on cathode during cathode sintering heat treatment

•Enhanced chemical bonding of like materials may strengthen cathode/contact interface

Measurement of Mechanical Properties of Interconnect/Contact/Cathode Structure

Effect of Cathode Surface Morphology on Cathode/Interconnect Bond Strength

Tensile Strength (lbs)

LSM #1	LSM #2
5.6	23.0
0.0	13.0
0.7	40.6
0.0	25.0
1.1	71.1
10.6	6.8

NATIONAL LABORATORY

35

LSM-20 layer #1

LSM-20 layer #2

Summary and Future Work

- Sintering aids can provide some improvement to sintering activity of candidate contact materials at stack fabrication temperatures
- Reactive sintering approaches are being applied to Ni-Co oxide and Mn-Co-Cu oxide systems.
- Above approaches result in very low cathode-to-interconnect ASRs
- Transition layers may reduce contact resistance and reinforce bonding strength between cathode and interconnect.
- Tensile testing of cathode/contact/interconnect structures has been initiated.
 - Determine "weak link": bulk or interfacial bonding
 - Effects of cathode/coating surface morphology
 - Effects of contact materials composition/processing

Acknowledgements

- The work summarized in this paper was funded under the U.S. Department of Energy's Solid-State Energy Conversion Alliance (SECA) Core Technology Program
- NETL: Briggs White, Travis Shultz, and Wayne Surdoval
- PNNL: Jim Coleman, Shelley Carlson, Nat Saenz, Rick Williford

