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Cathode/lInterconnect Contact Materials

» Requirements:

High electrical conductivity to reduce interfacial electrical resistance
between cathode and interconnect

Chemical and structural stability in air at SOFC operating temperature

Chemical compatibility with adjacent materials (perovskite cathode,
interconnect coating)

Adequate mechanical strength and bonding to adjacent components
Low cost materials and fabrication

» Challenges:

Low processing temperature during stack fabrication (800-1000°C)

« Low density results in low intrinsic strength and bond strength,
reduced conductance

Brittle nature of ceramics; Cost/volatility of noble metals

» Goal:

Develop cathode/interconnect contacts with low electrical resistivity
and increased mechanical strength

» Modeling results suggest strengthening of contacts can relieve W

stresses on seals Pacific Northwest
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Area Specific Resistance (ASR) Measurements
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Conventional Contact Pastes: LSM, LSCM,
LNF and LSCF
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Conventional contact layers
exhibit low intrinsic strength
and/or bonding strength
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Approaches

Sintering Aids
m Reduce the sintering temperature of contact materials to obtain increased
density/conductance/strength

Reaction-Sintering
m Similar to process used to prepare MnCo spinel coatings for steel
interconnects
m Contact material precursor powder contains multiple phases, which react
during stack assembly to form a conductive single phase

m Enthalpy of reaction provides additional driving force (besides surface
energy reduction) for densification

Transition Layers
m Apply to cathode and/or interconnect coating to enhance bond strength of
contact material
m Used in conjunction with either of above approaches
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Approaches

» Sintering Aids
m Reduce the sintering temperature of contact materials to obtain increased
density/conductance/strength

>

7

8 Pacific Northwest
NATIONAL LASORATORY



Effect of Sintering Aids on LNF-60/40: Sintering Activity
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Effect of Sintering Aids on LNF-60/40:

Electrical Resistance

ASR (mOhm-cmZ)
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Minimal improvement in density, bond strength

60pm

BOpm

Cross-section SEM images of the samples after the contact ASR measurements:
(a) LNF only, (b) LNF+1mol% Bi,O3, (c) LNF+3mol% Bi,O4, and (d) LNF+5mol% Bi,O,.
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Effect of Sintering Aids on LSM-20: Sintering Activity
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Effect of Sintering Aids on LSM-20:
Electrical Resistance
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Minimal improvement in density, bond strength
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Sintering Curves of LSCF-6428 with Various Additives
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Sintering Curves of LSCF with Various
Amounts of CuO Additions
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Contact ASR Results of LSCF with Sintering Aid CuO
(441-0.02MC|LSCF-CuO|LSCF)
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Approaches

>

» Reaction-Sintering
m Similar to process used to prepare MnCo spinel coatings for steel
interconnects
m Contact material precursor powder contains multiple phases, which react
during stack assembly to form a conductive single phase

m Enthalpy of reaction provides additional driving force (besides surface
energy reduction) for densification

-
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Reaction Sintering

Successfully used in fabricating MnCo spinel coatings
MnO + Co +3.50, — 2(Mn,.Co,:)O,

Driving force for densification:
®m Reduction of surface energy (~75 J/mol)
m Enthalpy of formation (~500 kJ/mol)

2 methods:
m Oxidation/Reduction
¢ Reduction of complex oxide to binary oxides, metals

» Re-oxidation to simultaneously densify coating and form
complex oxide

m Direct fabrication from precursor oxides and/or metals -

Single oxidation heat treatment Pacific Northwest
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Primary systems of interest

m Reaction sintered (Ni,Co)O, with fillers (tailor CTE,
reduce cost)

m Reaction sintered Mn, :Co, - ,Cu,O,

20 Pacific Northwest
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Reaction-Sintered Ni-Co Oxide (Ni:Co=1:2)
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Reaction Sintered (Ni1,C0)0O,

» Reduced (Ni, Co) O,

N giompositions with Ni: Co=1:2, 1.25:1.75, 1.5:1.5, 1.75:1.25 and
» Characterization
m Phase analysis (XRD)
m CTE (Dilatometry)
m Electrical Conductivity
m ASR
m Microstructure
m Mechanical Strength

» Approach:
m Select optimum (Ni,Co)O, composition
m Add alloying elements if needed for higher conductivity
®m Add fillers to reduce cost; also can adjust CTE (if needed) e

22 Pacific Northwest
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XRD of Ni-Co oxides
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* Powders with various Ni:Co ratios were synthesized by GNP process
* Powders were calcined at 850C for 5h, then attrition-milled for 7h

* The majority of the powder is (Ni,Co)O
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CTE of Ni-Co Oxides
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ASR results of NiCo oxides contact layer with
various Ni:Co ratios
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Abnormal behaviors for Ni2ZCo and NiCo oxides were observed,
with current density over 0.1A/cm? resulting in oscillating ASRs.
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New Compositions in Mn-Co-Cu System

1.5:1.41:0.09 (3mol% Cu) Powder synthesis and

1.5:1.35:0.15 (5mol%Cu)
1.5:1.2:0.3 (10mol%Cu)
1.5:1.05:0.45 (15mol%Cu)

Oxide Powders reduction

Metal Mixtures Same as oxide powders Ball milling

Characterization:
Phase analysis (XRD)
CTE (Dilatometry)
Electrical Conductivity
ASR
Microstructure
Mechanical Strength

Approach: Select optimum composition, investigate fillers to \gf/

26 reduce cost and adjust CTE (if needed) Paclfic Northwest
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XRD of dense bars of Mn, :Co, - ,Cu, O, Oxides
after sintering shrinkage tests

1700
1650 |
1600 |
1550 .
1500 Green: Cu=0.09 =

1400 * Red: Cu=0.3

1350 |

1250] Blue: Cu=0.45
1200 |
1150 |

1100 |
1050 |

1000 * 5
oy AB-,0O, spinel
900 |
850 |
800 |
750 |

Intensity (cps)

700 |
650 |

100 | ' f
5EZW J\WJ \vwﬂ‘ k“mm;..' ..!*.f_\\h[i\‘i. .1
2-theta

Non-spinel peaks (CuO,) appear when x=0.45



% Shrinkage

CTE Curves of Mn, :Co, - ,Cu, O, Oxides
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SEM Images of Reduced Mn, :Co, ,Cu,O,
Powders as Contact Pastes _(8IOO°C for 100hrs




ASR Test Results for Mn-Co-Cu Contacts
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Approaches

>

» Transition Layers
m Apply to cathode and/or interconnect coating to enhance bond strength of
contact material
m Used in conjunction with either of above approaches
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Transition Layer to Enhanced Bonding Strength
between Cathode and Contact Layer

.".I'da. '\-'5' -'Il'"

Contact layer

Protection layer

Protection Iayer

alloy interconnect alloy interconnect

Before assembly During stack fabrication

*Approach: Co-sintered transition layers may help to increase bonding
strength between interconnect

Example: Co-sinter thin layer of contact material on cathode during
cathode sintering heat treatment

*Enhanced chemical bonding of like materials may strengthen

cathode/contact interface
Pacific Northwest
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Measurement of Mechanical Properties of
Interconnect/Contact/Cathode Structure
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Effect of Cathode Surface Morphology on
Cathode/Interconnect Bond Strength

Tensile Strength (lbs)
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LSM-20 layer #1
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LSM-20 layer #2
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Summary and Future Work

Sintering aids can provide some improvement to sintering activity of
candidate contact materials at stack fabrication temperatures

Reactive sintering approaches are being applied to Ni-Co oxide and
Mn-Co-Cu oxide systems.

Above approaches result in very low cathode-to-interconnect ASRsS

Transition layers may reduce contact resistance and reinforce
bonding strength between cathode and interconnect.

Tensile testing of cathode/contact/interconnect structures has been
Initiated.

m Determine “weak link”: bulk or interfacial bonding

m Effects of cathode/coating surface morphology

m Effects of contact materials composition/processing



Acknowledgements

= The work summarized in this paper was funded under the U.S.

Department of Energy’s Solid-State Energy Conversion Alliance
(SECA) Core Technology Program

= NETL: Briggs White, Travis Shultz, and Wayne Surdoval
= PNNL: Jim Coleman, Shelley Carlson, Nat Saenz, Rick Williford

39 Pacific Northwest
NATIONAL LASORATORY



