Modeling Tools for Solid Oxide Fuel Cell Design and Analysis

Moe A Khaleel

BJ Koeppel, W Liu, K Lai, KP Recknagle, EM Ryan, EV Stephens, X Sun Pacific Northwest National Laboratory Richland, WA 99352

> 11th Annual SECA Workshop Pittsburgh, PA July 27-29, 2009

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

PNNL SOFC Modeling Tools

SOFC-MP

Stack level model for fast analysis of co/counter-flow SOFC stack performance

Detailed electrochemistry model

- Cell level model for the investigation of secondary reactions (degradation/contamination) mechanisms within the tri-layer
- Component-based design and performance modeling
 - Contact material
 - Interconnect
 - Glass seal

SOFC-MP Stack Simulation Code Recent Accomplishments

- Major memory improvements of 3D model to accommodate 50-cell stacks on LINUX platform.
- Previously, developed a 2D (or stacked 1D) model for fast analysis of co/counterflow SOFC stack performance
 - Benchmarked with literature cases
- New features added for <u>design</u> and <u>evaluation of realistic stack experiments</u>,
 - Allows users to maximize understanding of actual experiments where uniform nominal performance is not always achieved
 - Allows users to implement custom CH₄ reforming and I-V relationships
 - Allows users to quickly evaluate different conditions with automated output of stack performance metrics

- Capable of modeling cell-tocell variations, e.g.:
 - Thick measurement plate in middle of stack
 - Different flow rates into cells, e.g. due to blockage, leak, or bypass
 - Different I-V performance of cells
 - Short current in cells
 - Partial contact loss in cells
- Capability to analyze large stacks, e.g., a 96-cell 25 kW stack

SOFC-MP Stack Simulation Code Nominal Stack Performance – H₂/CH₄ Fuels

- 96-cell stack, 625 cm², 65% UF, 15% UA
- Electrical Performance
 - Hotter inflow gases cause current consolidation on leading edge of H₂ stack
 - 50% OCR fuel resulted in 7.5% less power
- Thermal Performance
 - Cell AT for top/bottom cells smaller than middle cells due to heat transfer to environment
 - Highest AT nearer bottom due to cooler inlet gas
 - OCR reduced T_{max} by 31°C and ΔT by 20°C

Results Comparison

	H2 Fuel	CH4 Fuel
Power (kW)	25.5	23.6
V _{avg} (V)	0.852	0.785
ΔV (V)	0.015	0.023
J _{avg} (A/cm2)	0.5	0.5
J _{max} (A/cm2)	0.65	0.64
T _{avg} (C)	793	743
T _{max} (C)	848	817
ΔT (C)	139	119

Cell Temperature

Current Density

Proudly Operated by Battelle Since 1965

SOFC-MP Stack Simulation Code Effect of Thick Plates – H2 Fuel

½" measurement plate (e.g. thermocouples) used for cells #32 and #64

- Observer effect: the measurement itself affects the data
- Larger thickness plate makes good thermal conductivity path to spread heat better and provides better thermal communication with ambient
- Mean cell temperature about the same, but ΔT underestimated by 21%
- Power actually increased 0.2% due to hotter leading edge

Proudly Operated by Battelle Since 1965

SOFC-MP Stack Simulation Code Effect of Flow Maldistribution – H2 Fuel

- Cells may have off-nominal flow rates
 - Flow blockage due to excessive spread of seal materials
 - Fuel by-pass around cell
- Example H₂ case
 - 75% fuel flow in cell #32, 50% air flow in cell #64
- Results
 - Min voltage on cell #32 0.81V
 - Higher max current density of 0.74 A/cm²
 - Local utilization on cell #32 increased to 87%

10 20 30 40 50 60 70 80 90

Cell Number

Cell Voltage (V)

0

SOFC-MP Stack Simulation Code Effect of Contact Loss – H2 Fuel

- Case with contact loss at cooler inlet entrance for 10% of active area
- Power loss -0.7%
- Peak current density increased 10% on the top cell with hottest inflow temperature
- Peak cell temperature increased 5°C

Proudly Operated by Battelle Since 1965

Current Density

Detailed Electrochemistry Modeling

Objective

- Resolve the local fields (potential, species, thermal) through the thickness of the tri-layer
- Understand the local conditions that contribute to the onset of secondary reactions in the tri-layer to enable prevention
 - Secondary Reactions: Any reactions not directly related to the electrochemistry which can cause degradation and damage to the fuel cell
- Investigate the effects of secondary reactions on the operation and performance of the SOFC

Accomplishments

- Developed 2D electrochemistry model which resolves the potential, current density and species through the anode-electrolyte-cathode assembly.
- Implemented chemistry model for the gas reforming reactions within the anode

Pacific Nor

Validated the model with previous modeling data from literature.

Detailed Electrochemistry Modeling: Approach

- Effective properties (transport, surface reaction, electrochemistry) model to calculate the species, thermal and electric potential distributions in the tri-layer
- Solves for the electrochemistry through the tri-layer which removes the assumption of a zero thickness reaction zone and allows calculation of the physical potential distribution within the electrodes
- Resolves the 2-D distributions through the thickness of the tri-layer, with implementation extendable to 3-D
- Begins by modeling the physics of the active cell and then overlaying the secondary reaction mechanisms and threshold energies

Detailed Electrochemistry Model: Physics

- 2D domain made up of the anode, cathode, electrolyte and fuel and air channels
- Gas transport in the porous electrodes including the species: H₂, H₂O, CO, CO₂, O₂, CH₄
- Surface chemistry with adsorption, desorption, reformation, and water-gas-shift, including the surface species: H, O, OH, H₂O, CH₄, CH₃, CH₂, CH, CO, CO₂, HCO, O²⁻, OH⁻, and free Ni sites
- Modified Butler-Volmer relationship for the electrochemistry in the electrodes
 - Based on the electrochemical reactions
 - Assumes one of the charge transfer reactions is rate limiting
- Within electrolyte and electrode phases
 - Solid state conduction of O²⁻ and e⁻
 - Electric potential distribution

Detailed Electrochemistry Model: Verification

Verifying the model for the H₂ – H₂O binary fueling system
Further verification and validation ongoing

Detailed Electrochemistry Model: Two-Dimensional Variable Property Model

Contact Materials and Stack Load Path Recent Accomplishments

- Previously, developed models to study influence of contact layers on load path through the stack
- Recently, evaluated densification behaviors of actual contact materials under development and sensitivity to initial material state, applied loads, and kinematic constraints
 - LSM + 3mol% CuO + BaCuO₂
 - LNF + 3mol% Bi₂O₃
 - LSCF + 3mol% CuO
 - Ni-Co oxides

Results:

- Method established to obtain model parameters for low temperature sintering from dilatometric screening test
- Good densification (>80%) of candidate material systems predicted as possible based on dilatometer testing (e.g. 4 hour treatment at 950°C)
- If possible, initial grain sizes <1 μm very beneficial for low temperature sintering</p>
- Constrained contact layers <1 mm have nearly uniform density but normal and shear stresses vary through the section
- Expected maximum stress levels in stack structures up to 10-15 MPa

Contact Materials and Stack Load Path Material Data from Experiments

- Use densification strain data for candidate contact materials from dilatometry under ramped heating
 - LSM + 3mol% CuO + BaCuO₂
 - LNF + 3mol% Bi₂O₃
 - LSCF + 3mol% CuO
- Fit parameters from the material constitutive model
- Include grain growth rate model from literature
- Verify performance of the constitutive model in FEA

Contact Materials and Stack Load Path Free/Pressurized Sintering

- For LSM+aid, much higher densification in 900-1000°C processing range
 - Less benefit for LNF+aid due to flat densification curve
- Great benefit to initial densification with grain sizes less than 1.0 micron
 - 0.1 micron gives 99% relative density; 1.0 micron give 72% relative density
 - Small grain growth rate for this temperature range so sintering is sustained
- Uniaxial pressure will increase the densification rate
 - Preload less than the sintering stress (~5 MPa) shows only small benefit

NATIONAL LABORATORY

Contact Materials and Stack Load Path Constrained Sintering (LSM + sinter aid)

- For bonded structures, the relative density varies through the part due to the constraint and stress field
- Thin contact layers <1.0 mm have more uniform relative density
 - Dominated by constraint of the two bonded surfaces so less variation
- Thin contact layers also showed smaller residual normal stress development
 - In-plane stress remains significant
 - Out-of-plane stress near zero
 - Edge shear stress becoming larger

Effect of Contact Layer Thickness

- Extend to stack rib/contact structures
 - 100x5 mm strip
 - 2mm ceramic
 - 0.2mm paste
 - 1mm steel
 - Hypothetical 4 hour treatment at 950°C

Contact Materials and Stack Load Path Stack Contact Structures (LSM + sinter aid)

Densification varies across layer with faster rates at edges

- In-plane stresses initially high but reduce after densification
- Out-of-plane stresses increase with time and vary spatially
- In-plane strains 200-400X greater than out-of-plane
- Final stresses at temperature:
 - Highest shear stresses at the edges (~14 MPa)
 - Highest normal stresses at the center (~7 MPa)
- Bulk layer <u>and</u> interfaces will both need adequate strength
 - Construction of lap shear strength testing system in progress

- Peak contact layer stresses from rib in 3D stack models of similar magnitude
 - ~2 MPa shear
 - ~10 MPa normal

Lifetime Quantification and Improvement of Coated Metallic Interconnects

Accomplishments

- Substrate thickness has significant effect on delamination/spallation of oxide scale
- Shot-peening avoids or delays the spallation of oxide scale
- Optimized cooling profile reduces the compressive stress in oxide scale to some degree → reducing driving force for scale spallation

Effect of Substrate Thickness on Cooling Induced Oxide Stresses for Uncoated SS441

- Modeled different substrate and oxide scale thicknesses
 - SS441: 0.25mm. 0.5mm, 1.0mm, 3.0mm
 - Oxide scale thickness: 2um, 4um, 6um, 8um, 10um, 15um
- For a given oxide scale thickness, i.e., oxidation time:
 - Shear stress increases with increasing substrate thickness
 - Compressive stress increases with increasing substrate thickness – more likelihood to spall
 - For a given substrate thickness:
 - Shear stress increases with increasing oxide thickness, i.e., oxidation time.
 - Compressive stress decreases with increasing a stress decreases with increasing a stress oxide thickness, i.e., oxidation time.
 - The magnitude still remains high, ~2GPa
- Thinnest substrate with the lowest oxidation time will have the least chance to spall.

Verification of Effects of Substrate Thickness on Cooling Induced Spallation

- The thicker the substrate, the higher the driving force for spallation
 - Cooling induced interfacial shear stress calculation – PNNL 17781
 - Interfacial shear strength: 395MPa*
 - Interfacial failure driving force can be reduced by reducing the bulk thickness of SS441.

*Liu et al., *Journal of Power Sources* 189 (2009) 1044–1050

Verified by experimental data from J. Stevenson and PNNL Materials Task

	Substr. Thick.	1.6mm	(0.06")	0.5mm (0.02")	
	Coating thick.	10 um Scale/441		10 um	
	Scale (um)			Scale/441	
	2	441 MPa	spall	361 MPa	No spall
	5	487 MPa	spall	410 MPa	critical
	10	489 MPa	spall	463 MPa	
)	15	485 MPa	spall	479 MPa	

Effect of Shot-peening: Specimen Oxidized at 850C for 2000h and 2500h

As-received 441 SS oxidized for 600h at 850°C

Shot-peened 441 specimen exposed to two thermal cycles & oxidized for a total of 2500h at 850°C Shot-peened and Ce-spinel coated 441 SS oxidized for 2000h at 850°C

- To date, no spallation has been observed on the shotpeened specimens whether un-coated or coated that have been exposed to at least 2000h or more at 850°C.
- Need to determine whether to expose shot-peened specimens for additional thermal cycles or to cross-section and evaluate.

Effects of Shot Peening on Scale Spallation

 Increase critical scale buckling strength by reducing critical buckling length ⁽¹⁾

2

$$\sigma_{cr} = 1.2235 \frac{E}{1 - v^2} \left(\frac{H}{a}\right)$$

Decrease buckling driving force, i.e., cooling induced compressive stress, by non-uniform oxidation of the shot peened surface:

- Reduce scale spallation/buckling tendency from both directions:
 - Increased strength
 - Decreased driving force

(1) Hutchinson, J.W. and Suo, Z., Advances in Applied Mechanics, Vol. 29, pp. 64-187, 1992.

NATIONAL LADO

Optimizing Cooling Profile to Minimize Spallation

Objective: Utilize creep/stress relaxation of SS441 at temperature above 500°C-600°C to minimize oxide spallation during cooling

Cooling profile examined:

Temperature °C

Intermediate temperature		500°C		600°C		No Creep
Max	10min	362	2.1%			370
Shear Stress	1 h	357	3.5%			
(Mpa)	10 h	347	5.8%	348	6.1%	
	20 h	345	6.7%	345	6.7%	

- Temperature drops linearly from 800°C to 500°C/600°C within 10min to 20hr in the first step; then drops to room temperature within 10s in the second step
- Slower cooling rate to intermediate temperature can be helpful in reducing spallation
- The shear stress reduction tapers off after 10h, maximum at 6.7% for 20h

Pacific Northwest NATIONAL LABORATORY

Glass Seal Modeling

Accomplishments

- Studied the effects of ceramic stoppers on the geometric stability of the self-healing seals in a simulated stack environment using creep analysis.
- Studied effects of various interfaces of PEN/Stopper, IC/Stopper, and Stopper/glass on the interfacial stresses upon cooling
- Modeled the self-healing behavior of glass
- Several topical reports and papers written by PNNL are available on this subject
 - Please see me after the presentation if you are interested in more information.

Conclusions and On-Going Work

Conclusions

- Array of tools to model SOFCs at various scales (stack, cell, component levels)
- Models improve understanding of SOFC operation and performance
- Collaborations with experimentalists can help to design materials, interpret experimental data and understand degradation issues

On-going work

- Benchmarking and enhancement of 3D SOFC-MP
- Validation and verification of detailed electrochemistry model
- Enhancement of the detailed electrochemistry model to include the energy equation and to investigation of secondary reactions
- Continued modeling of interconnects and coatings to validate our assumption on reduction of free buckling length
- Additional modeling of shot peened SS441 for process optimization and lifetime prediction of coatings
- Strength testing and modeling after contact material is selected

