NATIONAL ENERGY TECHNOLOGY LABORATORY

Smart Grid Overview

Ryan Egidi Integrated Electric Power Systems 11th Annual SECA Workshop July 27, 2010

Topics

- The "Case for Action"
- What is the Smart Grid?
- The Systems View
- Performance Modes
- Principal Characteristics
- Key Technology Areas
- Metrics

Case for Action

- Today's grid is aging and outmoded
- Unreliability is costing consumers billions of dollars
- Today's grid is vulnerable to attack and natural disaster
- An extended loss of today's grid could be catastrophic to our security, economy and quality of life
- Today's grid does not address the 21st century power supply challenges
- Missed opportunity to enjoy the benefits of a Smart Grid
- Disturbing trends in prices, reliability, peak loads, transmission congestion, & asset utilization

But is it worth it?

Smart Grid Supports 21st-Century Demand

The "Market" will create new stresses

NATIONAL ENERGY TECHNOLOGY LABORATORY

5

Electric Power System

Markets, System Operators and Communications

Distribution & DER

Consumers & DER

The Systems View

7

Smart Grid Key Success Factors

The Smart Grid is MORE:

- Reliable
- Secure
- Economic
- Efficient
- Environmentally friendly
- Safe

Smart Grid Performance Modes

Some of the performance modes include:

- Emergency Response
- Restoration
- Routine Operations
- Optimization
- System Planning

Smart Grid Characteristics

Principal Characteristics of a Modern Grid:

- *Enable* active participation by consumers
- Accommodate all generation and storage options
- *Enable* new products, services, and markets
- Provide power quality for the digital economy
- *Optimize* asset utilization and operate efficiently
- Anticipate & respond to system disturbances (self-heal)
- Operate resiliently against attack and natural disaster

...the enabler

It will "Enable active participation by consumers"

- Consumers have access to new information, control and options to engage in electricity markets
 - Reduce consumption and energy bill
 - Enable new technologies (PHEV, HAN, EMS, smart appliances, etc.)
 - Sell resources for revenue or environmental stewardship
 - Incentives to participate (i.e. smart rates)

• Grid operators have new resource options

- Reduce peak load and prices through demand response
- Improve grid reliability
- Ancillary services

Today

Little or no info, limited use of smart pricing, few choices

Tomorrow

Full price info, choose from many plans, prices and options, buy and sell, "E-Bay"

It will "Accommodate all generation and storage options"

- Seamlessly integrates all types and sizes of electrical generation and storage systems
- "Plug-and-play" convenience
 - Simplified interconnection processes
 - Universal interoperability standards
- "Moves the needle" shifts to a more decentralized model
- Large central power plants will continue to play a major role.

Today

Dominated by central generation. Little DG, DR, storage, or renewables

Tomorrow

Many "plug and play" distributed energy resources complement central generation

It will "Enable new products, services and markets"

- Links buyers and sellers consumer to RTO
- Supports the creation of new electricity markets
 - Demand Response
 - Energy, Capacity, Ancillary Services
 - Brokers, integrators, aggregators, etc.
 - In-home devices and applications
- Provides for consistent market operation across regions

	Today	Tomorrow	1///
	Near-zero market interaction at distribution level	Distribution assets and consumers act as resources for transmission, growth of new secondary markets	RA
(13)	13 NATIONAL ENERGY TECHNOLOGY LABORATORY		YFOTA

It will "Provide power quality for the digital economy"

- Monitors, diagnoses and responds to PQ issues
- Supplies various grades of power quality at different pricing levels
- Greatly reduces consumer losses due to PQ (~\$25B/year)
- Quality Control for the grid

It will "Optimize asset utilization and operate efficiently"

• Operational improvements

- Improved load factors and lower system losses
- Integrated outage management
- Risk assessment

• Asset Management improvements

- The knowledge to build only what we need
- Improved maintenance processes
- Improved resource management processes
- More power through existing assets

• Reduction in utility costs (O&M and Capital)

Today Tomorrow Limited grid information & minimal integration with asset management Deep integration of grid intelligence enabling reduction in O&M and CapEx 15

It will "Anticipate & respond to system disturbances"

- Performs continuous self-assessments
- Detects, analyzes, responds to, and restores grid components or network sections
- Handles problems too large or too fast-moving for human intervention
- Self heals acts as the grid's "immune system"
- Supports grid reliability, security, and power quality

TodayTomorrowProtects assets following disruption
(e.g., trip relay)Prevents disruptions, minimizes
impact, restores rapidly

It will "Operate resiliently against attack and natural disaster"

- System-wide solution to physical and cyber security
- Reduces threat, vulnerability, consequences
- Deters, detects, mitigates, responds, and restores
- "Fort Knox" image
- **Decentralization and self-healing enabled**

	Today	Tomorrow	
	Vulnerable to terrorists and natural disasters	Deters, detects, mitigates, and restores rapidly and efficiently—"cyber proof"	RAT
-			TORY

Key Technology Areas

Sensors and Measurement

19

Advanced Control Methods

Decision Support & Improved Interfaces

NATIONAL ENERGY TECHNOLOGY LABORATORY

(21

Advanced Components

Integrated Communications

23

Smart Grid Metrics

- Metrics are needed to measure progress in achieving the vision.
 - Build metrics are leading indicators and measure progress in the implementation of the Smart Grid.
 - Impact metrics measure how the Smart Grid influences the Key Success Factors.

If we do this right – we can all be winners

- Suppliers
- Consumers
- Society

Value Proposition

- Utilities (What's in it for my shareholders?)
 - Rate of return, outage restoration, billing, reduce T&D losses, optimize asset utilization, maintenance, planning and improved customer satisfaction
- Consumers (What's in it for me?)
 - More reliable service, reduce business loss, energy bill savings, transportation cost savings, options, sell resources into the market
- Society (What's in it for us?)
 - Rate Downward pressure on prices, improved reliability, grid robustness, new jobs and growth in GDP, revolutionize the transportation sector and reduce import of foreign oil.
- Overall benefit to cost ratio is 4:1 to 5:1

For More Information

For additional Information: www.netl.doe.gov/smartgrid

Federal Smart Grid Website <u>www.smartgrid.gov</u>

Smart Grid Information Clearinghouse www.sgiclearinghouse.org

Ryan Egidi National Energy Technology Lab 304-285-0945 Ryan.Egidi@netl.doe.gov

