Syngas Clean-up System to Remove Harmful Contaminants for SOFCs

Gökhan Alptekin, PhD Rita Dubovik, Michael Cesario

11th Annual DOE/SECA Workshop Pittsburgh, PA

July 29, 2010

TDA Research, Inc.

- Privately Owned / Began operations in 1987
- ~13 million revenue in 2009
- 84 full-time technical staff
 - Primarily chemists and engineers, more than half with advanced degrees (26 PhDs)

12345-12355 W 52nd Avenue

22,000 ft² offices and labs

Synthetic Chemistry, Catalyst/Sorbent Synthesis and Testing, Machine and Electronics Shops, SEM, TOF Mass Spec

4663 Table Mountain Drive

- 27,000 ft² offices and labs
- 27 fume hoods, Synthetic Chemistry, Catalytic Process Development

SulfaTrap[™] Sorbents

SulfaTreat DO (1.3 ton/day plant at Bakersfield, CA)

SulfaTrap[™] sorbents for fuel desulfurization for distributed and transportation fuel cell applications

- TDA has developed and commercialized removal for bulk desulfurization and the removal of organic sulfur species from various hydrocarbons
 - Natural gas, LPG and biogas desulfurization
 - Warm gas and hot reformate gas desulfurization
 - Diesel fuel and logistics fuel desulfurization
- We supply almost every SECA member and other SOFC and PEMFC developers around the world

TDA Background In Syngas Clean-up

Trace Contaminant Removal

- With DOE funding, TDA is developing sorbents to remove trace metals in coal-to-chemicals and IGCC plants
- TDA's Hg sorbent is qualified for Siemens' UltraClean[™] process
- TDA and Eastman Chemicals are jointly demonstrating a sulfurtolerant high temperature arsenic removal sorbent

Pre-combustion CO₂ Capture

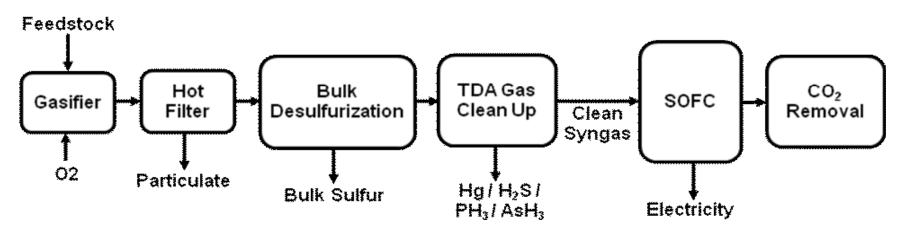
- Proof-of Concept Demonstrations at Wabash River IGCC Plant
 - Largest single-train, oxy-blown
 E-Gas[™] Gasifier
- National Carbon Capture Center
 - Pilot-scale, air-blown transport gasifier

Introduction

- Coal-derived syngas contains a myriad of trace contaminants
- In addition to sulfur, As and P have identified as potent poisons for SOFC electrocatalyst

Typical Metal Contaminants in Coal Concentration at the Contaminant UND-EERC Kingsport facility (ppmv) **Coal Type** Hg Se As Arsine (AsH₃) 0.2 0.15 - 0.58(ppm) (ppm) (ppm) Thiophene 1.6 0.11 Pittsburg 4.1 0.6 Chlorine (Cl) 120 Methyl Fluoride (CH₃F) 2.6Elkhorn/Hazard 0.13 4.03.1 Methyl Chloride (CH₃Cl) 2.01Illinois No.6 0.22 2.7 2.2 Hydrogen Chloride (HCl) <1 0.05 - 5.6Fe(CO)c Wyodak 0.19 1.3 1.6 Ni(CO); 0.001-0.025 CH3SCN 2.1 **Bool et al., 1997** Phosphene (PH₃) 19 Antimony (Sb) 0.025 0.07The concentration of these Cadmium (Cd) 0.01 Chromium (Cr) < 0.025 6.0 contaminants vary depending Mercury (Hg) < 0.025 0.002 Selenium (Se) <0.15 0.17 on the coal type and gasification Vanadium (V) < 0.025 Lead (Pb) 0.26 system in place Zinc (Zn) 9.0

Contaminant Concentration for Different Gasifiers

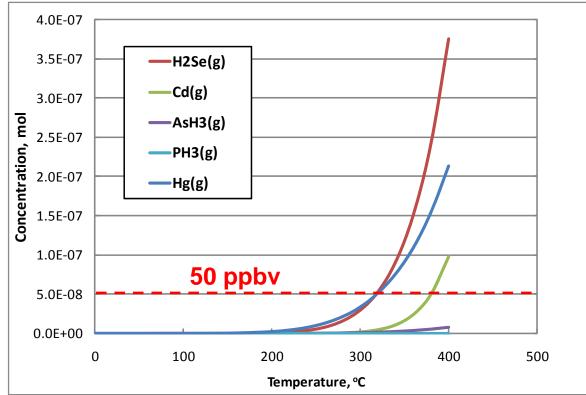

Synthesis Gas Clean-up Technologies

- The baseline capture technologies uses low temperature processes
 - Eastman Chemicals uses various activated carbon sorbents for Hg and As removal
 - Sulfur is removed with Rectisol
- A major issue with these technologies is that they require to cool the gas below its dew point
 - ~245°C for GE gasifier; ~200°C for catalytic gasifiers
- Warm temperature gas cleaning has major benefits:
 - Improves the efficiency of the power cycle
 - A previous Siemens analysis indicates ~4% efficiency decrease for IGCCs
 - Eliminate the need for any heat exchange equipment
 - Eliminate the difficulties processing the condensate
 - Re-heating and re-humidification of syngas will add to the cost

Project Objective

 TDA's approach was to use a <u>high temperature chemical absorbent</u> that can remove these contaminants above the dew point of the synthesis gas

- The sorbent is operated in an <u>expendable manner</u>
- The key contaminants are identified as <u>arsenic, phosphorous and</u> <u>sulfur (and mercury)</u>
- In Phase I we carried out carry out proof-of-concept demonstrations at the bench-scale to assess technical and economic viability of the concept

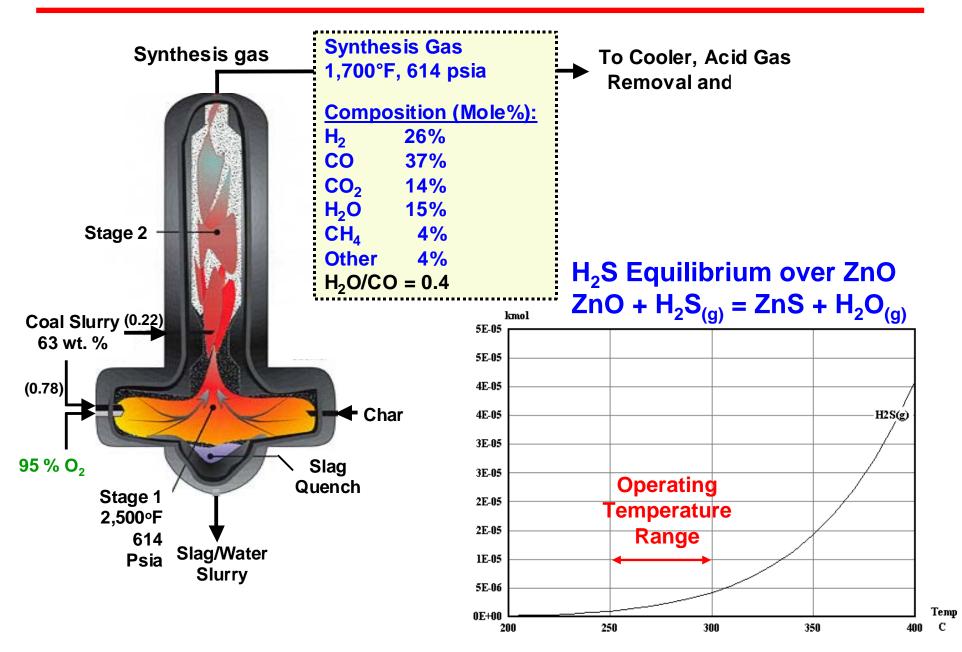

TDA Sorbent

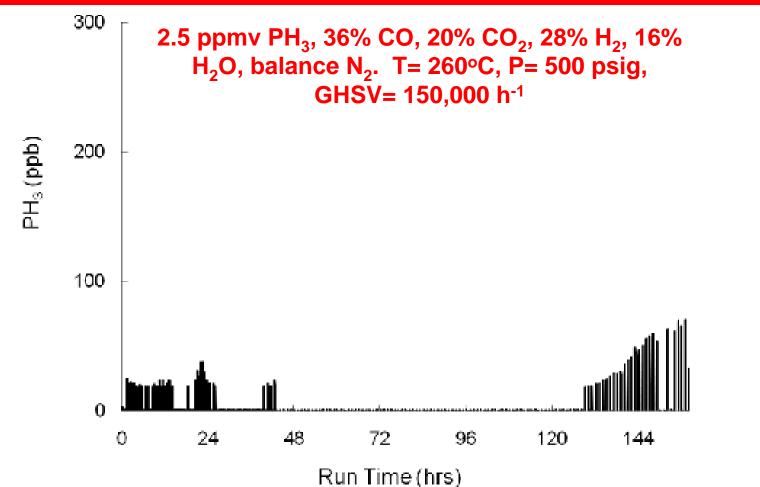
- Sorbent requirements
 - High contaminant absorption capacity
 - Low cost
 - High removal efficiency (99+%)
 - No activity for side reactions
- TDA identified an active phase that can remove both metal hydrides and volatile metals from syngas

Equilibrium composition of potential contaminants

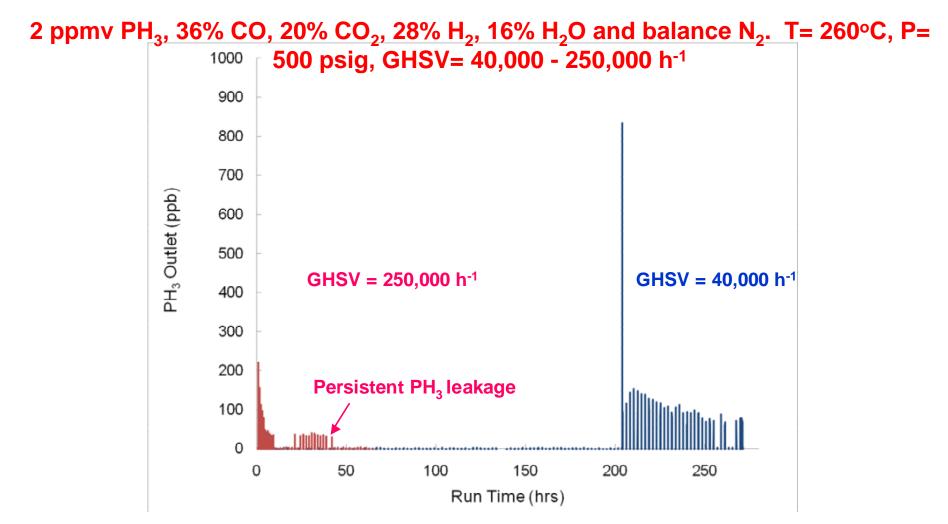
1 ppmv of each contaminant was added to a representative synthesis gas

Contaminant concentration can be reduced to ppbv levels

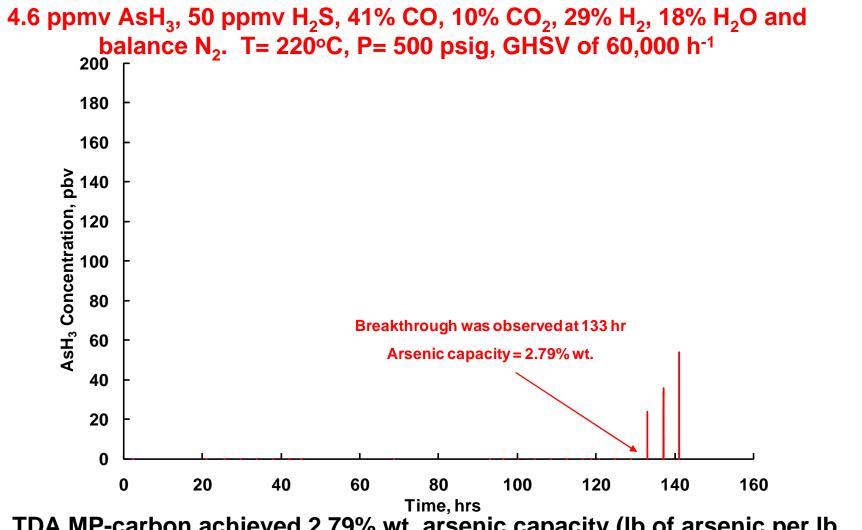

Sorbent Screening


- An automated test units was used for screening and evaluations
 - 0.5 to 25.0 g sorbent tested (sorbent in the form of pellets in selected tests)
- High temperature, high pressure reactors rated for P_{ma} = 900 psig @ 260°C
- On-line analyzers were used to monitor AsH₃ and PH₃ breakthrough
- A chemiluminescence detector was used to monitor sulfur

Test Gas Composition

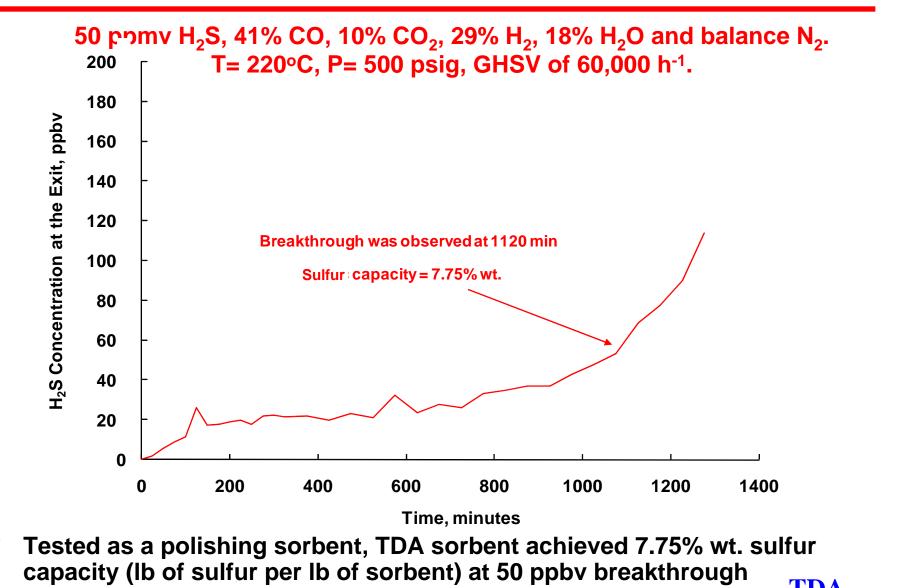

PH₃ Removal

- The sorbent also achieved a very high capacity for P in excess of 3% wt. (lb of P removed per lb of sorbent)
- The sorbent reduced PH₃ concentrations to single digit ppb levels


Effect of GHSV

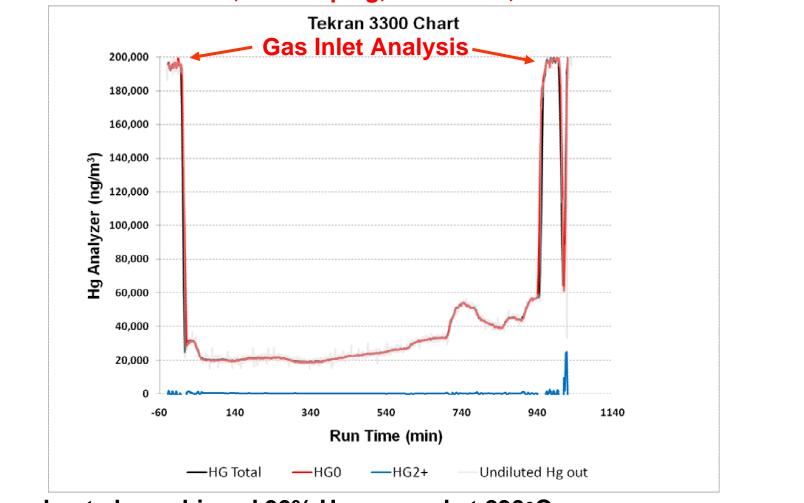
 Phosphorous capacity at 40,000 h⁻¹ (90 miliseconds) exceeded 3.6% wt. and no leakage was detected
 12 TDA

Research


Arsenic Removal

TDA MP-carbon achieved 2.79% wt. arsenic capacity (lb of arsenic per lb of sorbent) at 20 ppbv breakthrough

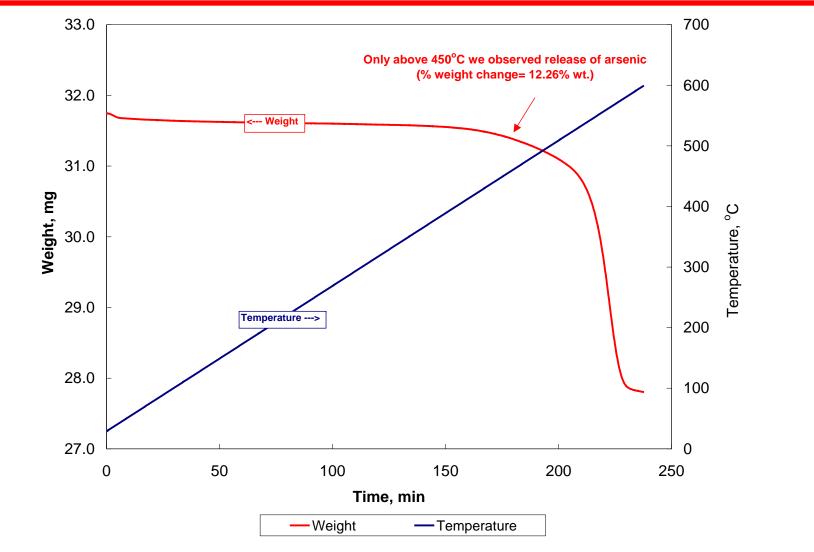
13 $\frac{TDA}{Research}$


Sulfur Removal Sorbent

Research

Hg Removal

200 ppbv Hg, 41% CO, 10% CO₂, 29% H₂, 18% H₂O and balance N₂. T= 230°C, P= 500 psig, GHSV= 60,000 h⁻¹



15

Research

The sorbent also achieved 90% Hg removal at 230°C

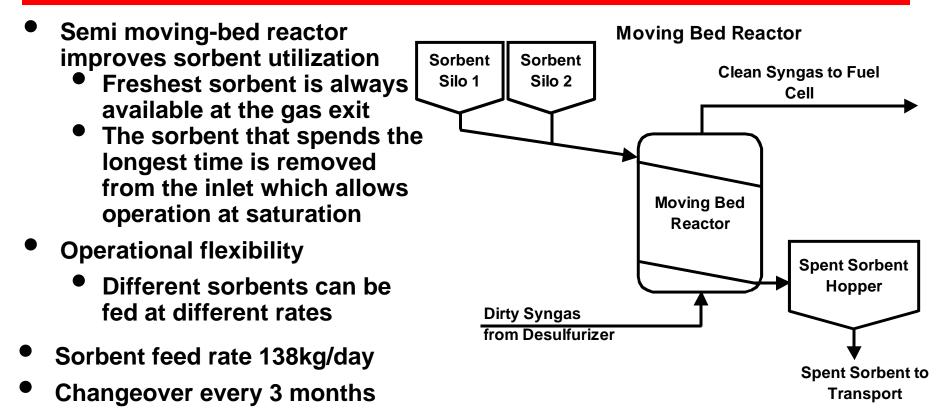
Stability of Absorbed Arsenic

• The sorbent ties up arsenic strongly with no signs of release below 400°C

Research

Engineering and Cost Analysis

- Sorbent need is estimated based on gas flow rate, contaminant concentration and sorbent capacity
- Basis: 100 MW_e
 - GE gasifier
 - 157,000 lbs per hour of syngas
 - Contaminant concentrations based on published levels at Eastman's Kingsport Facility
- Sorbent utilization
 - At projected contaminant concentrations, sorbent still has additional capacity for sulfur and phosphine


Gas composition Texaco Gasifier, Illinois no. 6 coal				
30.92%	Hydrogen			
40.41%	Carbon Monoxide			
11.02%	Carbon Dioxide			
0.71%	Nitrogen			
0.00%	Oxygen			
0.10%	Methane			
16.84%	Water			
100	MWe Output			
50%	Efficiency			
156,579	lbs/hr Syngas			

Contaminant	Concentration	
H ₂ S	3.5 ppmv	
PH ₃	1.9 ppmv	
AsH ₃	0.6 ppmv	

Contaminant	Sorbent Capacity	Projected Loading
H ₂ S	7.75%	6.9%
PH ₃	7.00%	3.6%
AsH ₃	2.79%	2.8%

Reactor Design – Semi-moving Bed

- Favorable gas-solid contact time
 GHSV= 125 h⁻¹ (8 ft x 24 ft reactor)
- Expected pressure drop of 3.6psi (1/8" pellets)
- Parasitic power loss = 13.3 kW (vs. 50 kW in a fixed-bed reactor with annual changeover)

Capital Cost Breakdown

DIRECT COSTS SUMMARY (2007 PRICES)			\$1,000	
	Equipment	Labor	Total	
Sorbent Reactor	707.0		707.0	
Storage Hoppers	189.4		189.4	
Flow Control Feeders	30.0		30.0	
Spent Sorbent Hopper	94.7		94.7	
Sorbent Mix Hopper	49.5		49.5	
Sorbent Flow Piping	38.6		38.6	
TOTAL DIRECT COS TS	1109.2	0.0	1109.2	
INDIRECT COSTS (Percentage of direct labor)		50%	0.0	
TOTAL DIRECT AND INDIRECT COST			1109.2	
ENGINEERING (percentage of direct costs)		5%	55.5	
OVERHEAD & ADMINIS TRATION (percentage of direct costs)		8%	88.7	
CONTINGENCY		10%	110.9	
FEE (percentage of on-site costs)		5%	55.5	
TOTAL PLANT COST			1419.8	
STARTUP COST (percentage of direct costs)		3%	33.3	
SPARE PARTS (percentage direct equipment costs)		5%	55.5	
INITIAL SORBENT INVENTORY (One Week Usage)			10.7	
FACILITIES		20%	221.8	
LAND		see note	0.0	
WORKING CAPITAL (2 months of annual operating c	ost)		1148.5	
TOTAL CAPITAL REQUIREMENT			2889.5	
Capital Cost for Purification System = \$28.9/kW				

Operating Costs Breakdown with Annualized CAPEX

Operating & Maintenance Costs	\$/year	
Operating labor*	\$ 280,800	3 person shift/\$15/hr
Supervising labor*	\$ 42,120	15% of operating labor
Maintenance labor*	\$ 154,440	55% of operating labor
Maintenance material*	\$ 140,400	50% of operating labor
Sorbent replacement cost	\$ 553,999	
Parasitic Power Cost		
Disposal, \$500/ton	\$ 25,182	
Overhead*	\$ 95,472	20% of direct labor cost
Taxes, insurance and Admins	\$ 115,580	4% of Total Capital Cost
Total O&M	\$ 1,407,992	-
Capital recovery, 20%	\$ 577,899	
Annual Operating Costs	\$ 1,985,891	-
Cost of Clean Syngas	\$ 3.19	per ton

- Annualized Cost for Purification = \$1,985,000/year
- Cost of Removal of Contaminants = \$3.19 per ton of syngas treated (\$29.96 per pound of contaminant)
- Impact on COE = \$0.0023/kWh
 - <3% of COE (at \$0.0753/kWh) <1.8% of COE @ 500 MW capacity</p>

Acknowledgements

- The funding provided by DOE is greatly acknowledged
- DOE Project Monitor Joe Stoffa

