Performance Degradation of LSCF Cathodes

Matt Alinger GE Global Research Niskayuna, NY

11th Annual SECA Workshop Pittsburgh, PA July 27-29, 2010

imagination at work

Project goals and objectives

- Develop high performance (>0.75 W/cm²), low degradation (<1%/1000h power density) SOFCs operating at 800°C
 - Identify dominant degradation mechanisms
 - Develop and implement cost effective degradation mitigation strategies

SOFC performance evolution

No performance degradation

25cm² cell degradation (2008)

SOFC degradation - materials focused approach

With a 'fixed' materials set: Focus on cathode ^{imagination at work} side, high-impact degradation mechanisms

2008 25cm² cell degradation

High power density and high degradation rate Degradation mechanisms identified

Barrier layer delamination

July 27-29, 2010

Chromium poisoning

Implication: Loss of Sr from cathode - strontium chromate Solutions:Densification of cathode interconnect coating Improved process control to ensure full coverage

imagination at work

Implication: SrZrO₃ phase formation - resistive Solution: Densification of barrier layer possible

Implications of Sr loss (LSCF)

Diffraction measurements at the X14A beamline, the National Synchrotron Light Source, Brookhaven National Laboratory (λ = 0.73339 Å).

Loss of Sr (A-site deficiency) leads to formation of 2nd phase in LSCF cathodes.

Current degradation status

^{11&}lt;sup>th</sup> Annual SECA Workshop July 27-29, 2010

Effect of operating current (800°C)

strong function of operating point

Direct measurement of current collector resistance during testing

July 27-29, 2010

Contact resistance testing

Data indicates diffusion limited (t^{1/2}) kinetics governed by oxide growth

Summary

- LSCF materials set capable of meeting performance goals (>0.75 W/cm² & <1%/1000h degradation)
- Degradation behavior significantly impacted by specific dominant mechanism
 - Many potential mechanisms
 - Rate dependent on mechanism
- >10,000 h testing required to fully validate LSCF materials set
 - Extrapolation of 1000-3000 hr data promising

Acknowledgements

- Joe Stoffa, Briggs White, Travis Shultz and Wayne Surdoval of DOE/NETL
- GE SOFC Team

This material is based upon work supported by the Department of Energy under Award Number DE-NT0004109. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE.

