DEVELOPMENT OF CERAMIC INTERCONNECT MATERIALS FOR SOFCs

KYUNG JOONG YOON, JEFFRY W. STEVENSON, AND OLGA A. MARINA

MOTIVATION
Challenges of Acceptor-doped Lanthanum Chromite
- Inferior Sintering Behavior
- Reactivity with YSZ Electrolyte
(formation of Lanthanum Zirconate)

GOALS
Develop Ceramic Interconnect Materials with
- Chemical Stability
- High Electronic Conductivity
- Low Ionic Conductivity
- Improved Sintering Behavior
- Thermal Expansion Match
- Dimensional Stability
- Chemical Compatibility with Other Components
 Through Doping Yttrium Chromite with calcium on A-site and Transition Metals on B-site

CHEMICAL STABILITY

SINTERING BEHAVIOR
- Measured with Dilatometer
- Co- and Ni-doping improves sinterability.
- Small addition of Cu (~2%) remarkably enhances sinterability.

MICROSTRUCTURE
- Cu, Co, and Ni-doping: Open Porosity / Grain Size

THERMAL EXPANSION

OXYGEN PERMEATION
- Estimated Leakage Current Density < 5 mAlcm²
 (800°C, 10⁻²⁻¹P₀₂=0.21, 20 µm thick Interconnect)

CHEMICAL EXPANSION

ELECTRICAL CONDUCTIVITY
- Co- and Ni-doping improves conductivity.
- Increase of Charge Density was confirmed by Seebeck measurements.

POINT DEFECT MODEL

SUMMARY
Calcium- and Transition Metal-doped YCOₓY
- Glycine-Nitrate Process
- Orthorhombic Perovskite Structure
- Cu-doping significantly improves sinterability.
- TEC can be controlled through B-site doping.
- Conductivity is improved by Co- and Ni-doping.
- Ni-doping improves stability toward reduction.
- Oxygen ionic leakage current is sufficiently low.
- Chemically compatible with YSZ, NIO, and LSM.

FUTURE WORKS
- Optimize composition of multiple dopants.
- Investigate sintering behavior of thin interconnect on electrolyte and anode.

ACKNOWLEDGEMENT
Support from the U.S. Department of Energy, National Energy Technology Laboratory (NETL) through Solid-State Energy Conversion Alliance (SECA) program is gratefully acknowledged. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RL01830. The authors appreciate XRD analysis by CN Cramer and T Varga, SEM analyses by AL Schemer-Kohrn, and SEM sample preparation by SJ Carlson and CE Chamberlin.

For more information about the science you see here, please contact

KYUNG JOONG YOON
Pacific Northwest National Laboratory
P.O. Box 999, MS-6300
Richland, WA 99352
(509) 372-4255
kyungjoo.yoon@pnl.gov

About Pacific Northwest National Laboratory
The Pacific Northwest National Laboratory, located in southeastern Washington State, is a U.S. Department of Energy Office of Science laboratory that solves complex problems in energy, national security and the environment, and advances scientific frontiers in the chemical, biological, materials, environmental and computational sciences. The Laboratory employs 4,000 staff members, has a $760 million annual budget, and has been managed by Ohio-based Battelle since 1965.