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* Goal: To optimize the FlexCell geometry
for mechanical robustness while
maintaining high active area
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* Approach

= Small Scale: developing material
models and modeling the repeating
unit cell
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= Large Scale: modeling whole
electrolyte membranes and identifying
key geometric design parameters

* %AA more significant than geometry

* Current range of radius of curvature has no effect

* For tension loading, results identical in both directions—>2:1 same results as 1:2
* 1:1 loading gives the highest stresses of all

Honeycomb structure in
a FlexCell™

: : Design Factors
Material Properties and Models e Distribution of cutout geometries

* Addition of support only regions-
thickness, width, number, and

Sonic Resonance Technique
(ASTM E 1875-08)

* Modulus calculated from resonant
frequency of a vibrating specimen,
geometry, and mass of specimen

* Modulus determined up to 800 °C
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Model of FlexCell in ANSYS

* Frame width and thickness
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* Displacement scales linearly
e Stress reduced for models with
- wider vertical ribs
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* Specimen’s gage section
contains thick and thin regions
corresponding to a given %AA

reduce thermal
stress

* Width of shorter vertical rib more critical in reducing stresses and deflection

. . il ' e Strategic arrangement of the cutout patterns is very important for robustness
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Specimen Predicted Experimental Summar and Future Work
Geometry 9%AA %E.,,  Stiffness Stiffness y
e E calculated at 0.02% (GPa) (GPa) * NexTech's FlexCell™ has hexagonal support mesh to enable both mechanical
strain robustness and performance
Large Hexes 57 39 79.6 /3.3

* Thickness is a trade-off between strength and performance

Small Hexes 39 52 106.4 108.6 e Wide thin plates necessitate the use of two-scale modeling

Small Circles 36 55 111.7 112.1 e Magnification curves for loading (bending, compression) are under way

* Geometrical design refined for mechanical strength while maintaining %AA
* Next Step: Modeling of SOFC stacks to improve thermal cycling capabillity

* Predicted and
Experimental agree well

No Hexes 0 100 204.6 202.2
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