

Surface-Sensitive Analytical Techniques & Optimizing Fuel Cell Materials

Andrew M. Swisher

Research Associate

Abstract

This is a survey that defines the operating principles and characteristics of high resolution, surface, analytical techniques including;

SEM, TEM, STM, AFM, EDS, WDS, AES, XPS, ICP-MS, SIMS XRD, and XAS.

- Understanding of these methods is important to guide decisions about the appropriate analytical techniques to use in fuel cell analyses.
- Review of surface-sensitive analytical techniques
- Composition, elemental and physical structure of materials as well as information about the outer most atomic layers of solid surfaces.
- The objective of this work is to provide background information on the science, mathematics, operating principles with each of these analytical methods.

Objectives

- Microscopy & Imaging Techniques
 - STM
 - AFM
 - TEM
 - SEM
- Elemental Composition
 - EDX
 - WDX
 - SIMS
 - ICP-MS
 - ESCA
 - Auger
- Morphology, Crystal Structure
 - XRD
 - XAS

PART I: MICROSCOPY

Scanning Probe Imaging

STM, AFM

Electron Microscopy

TEM, SEM

	Туре	Measurement Method	Resolution	Magnification	Destructive
TEM	2D Photo	Absorption and Diffraction of Electrons	~0.12nm	1000x to 750,000x	Yes
SEM	2D Photo	Scattered Electrons and X-rays	1 nm to 20 nm	15x to 500,000x	Yes
STM	3D Image	Electron Tunneling	~0.1 nm laterally ~0.01 nm depth	Upwards of 1000000000x	No
AFM	3D Image	Deflection Angle from Cantilever Probe	Smaller than 0.1nm	Upwards of 10000000000x	No

Imaging: Scanning Tunneling Microscopy

STM

- High resolution, three-dimensional images of a sample
- Measures the rate of quantum tunneling within a material
- Can produce images that observe individual atoms
- Images can characterize surface roughness, surface defects, and determining the size and conformation of molecules and aggregates on a surface.
- The surface structure is studied using an extremely fine conducting probe, the tip of which is formed by a single atom

STM allows scientists to 'see' and manipulate individual atoms.

Imaging: Atomic Force Microscopy

AFM - 3D Surface Imaging

High-resolution type of scanning probe microscope

The AFM consists of a cantilever with a sharp probe that is used to scan the specimen surface.

The AFM produces a very accurate nanoscale surface image in the X, Y and Z direction.

The sample requires minimal preparation. Vacuum is not used in AFM measurements.

The information during an AFM measurement is gathered by "feeling" the surface with a mechanical probe.

Single polymer chains (0.4 nm thick) recorded in aqueous media at pH 3.9 and pH 4.2

Microscopy: Transmission Electron Microscopy

TEM

- Microscope images objects on the order of a few angstroms
- A "light source" at the top of the TEM emits electrons which travel through a vacuum in the column of the microscope
- The electron beam is then focused to a fine probe and scanned over the thin specimen.
 - The electron beam passes through a sample, which is very thin ("electron transparent"), in order to observe the internal structure of the material.
- Depending on the density of the material present, some of the electrons are scattered off of the sample
- At the bottom of the microscope the unscattered electrons hit a fluorescent screen, which gives rise to a "shadow image" of the specimen with its different parts displayed in varied darkness according to their density

Example TEM Images of different morphological surfaces, grains, pores.

Microscopy: Scanning Electron Microscope

SEM

- The microscope images surface features of an object and its texture down to a few nanometers.
- It uses electron illumination to form images from reflected electrons.
- Image is seen in 3-D but the result is a 2-D photograph.
- The resulting pictures are in black and white.
- High magnification and high resolution
- Sample is usually coated in gold or carbon and must be dry to go under vacuum
- The SEM is critical in all fields that require characterization of solid materials.

SEM Image of Fractured Surface

SEM image of Crystalline Material

PART II: ELEMENTAL COMPOSITION CHARACTERIZATION

Electron Spectroscopy

EDX, WDX

Mass Spectrometry

SIMS, ICP-MS

Photoelectron Spectroscopy

ESCA, Auger

Elemental Composition: Energy Dispersive X-Rays & Wavelength Dispersive X-Rays

EDX, WDX

- EDX & WDX are detectors attached to Electron Microscope
- Chemical/Elemental microanalysis techniques
- The electron beam from the microscope strikes the surface of the sample
- The energy of the beam is in the range 10-20keV
- This causes X-rays to be emitted from the material
- The X-rays are generated from 2 microns in depth
 - EDS is not a surface science technique and is considered a qualitative technique
- Analysis of each element in the sample can be acquired.
- EDX analysis takes 5-15 minutes, WDX takes hours.
- Unlike the EDX technique, WDX looks at the diffraction pattern created by the x-rays emitted from the sample.

EDX Spectrum Elemental composition

WDX data spectrum

EDX (Yellow) and WDX (Grey). MO & S lines are overlapped by EDX but resolved by WDX spectrum.

Mass Spectrometry

SIMS

- Method is to analyze ejected ions from the material surface.
- Bombard the sample surface with a fast moving ion beam in a high or UHV environment
 - where the primary ions are focused using a series of lenses onto the sample
- Surface compositional analysis with 5-10nm depth resolution
- Quantitative analysis of trace elements in ppb to ppm range
- Spatial distribution of elemental species
- In-depth concentration profiles of low level dopants or ions
- Data collection of both positive and negative ions

Inductively Coupled Plasma Mass Spectrometry

ICP-MS

- Sensitive type of mass spectrometry
- Determine concentrations of isotope ratios below one part per trillion
- ICP-MS combines an inductively coupled plasma source, an energy filter, a magnetic sector analyzer, and multiple collectors to measure ions
- Sample is introduced to a 'flame' of plasma that is electrically neutral overall
 - has had a substantial fraction of its atoms ionized by high temperature
 - is used to atomize introduced sample molecules and to further strip the outer electrons from those atoms

ICP-MS spectrum of Be, Al, Co, Y, In, Ce, Pb, Bi and U (100 mg dm⁻³) (courtesy of Dr K, Jarvis, Plasma Mass Spectrometry Laboratory, Royal Holloway College)

Electron Spectroscopy: XPS or ESCA

X-ray photoelectron spectroscopy Electron Spectroscopy for Chemical Analysis

- Measures the elemental composition, chemical state and electronic state of the elements in a material
- Used in many different types of studies
 - to analyze inorganic compounds, metal alloys, semiconductors, polymers, elements, catalysts, glasses, ceramics, paints, papers, inks, plant parts, bio-materials, viscous oils, glues, ion modified materials, etc.
- Must be done in UHV
- Method
 - Spectra are obtained by irradiating a material with low energy Mg or Al x-rays which are used to generate photoelectrons from the top1-10nm of the sample surface.
 - The binding energies of the emitted photoelectrons are characteristic of the various elements and the different chemical states present on the sample surface.
 - The energy of these photoelectrons are analyzed to obtain qualitative and quantitative information on surface composition and surface electronic states.

Electron Spectroscopy: Auger AES

AES Spectrum for Passivated Stainless Steel

- A widely used surface-sensitive analytical technique
- Must be done in UHV
- Provides elemental composition of the outer most atomic layer for a solid
- Based on the Auger effect
 - analysis of energetic electrons emitted from an excited atom after a series of internal relaxation events

Method

 uses an electron beam to produce an excited ion which relaxes by the emission of a second electron of discrete energy to form a doubly ionized atom. The kinetic energy of the secondary electron is measured to yield information about the sample surface.

PART III: MORPHOLOGY CRYSTAL STRUCTURE

DIFFRACTION, SCATTERING

XRD

XAS

X-Ray DIFFRACTION

XRD

- Used to study crystals structure
 - salts, metals, minerals, semiconductors, inorganic, organic molecules.
- Determine the size of atoms, the lengths and types of chemical bonds, and the atomic-scale differences among various materials, especially minerals and alloys
- Determines the arrangement of atoms within a crystalline sample.

Method

- X-rays are generated by a cathode ray tube, filtered to produce monochromatic radiation, and focused on sample.
- A beam of X-rays strikes a crystal and diffracts at specific angles
- Technique observes the constructive interference patterns of monochromatic X-rays diffracted from a crystalline sample
- Bragg's Law ($n\lambda$ =2d sin θ).
- From the angles and intensities of these diffracted beams, a crystallographer can produce a three-dimensional picture of the density of electrons within the crystal.

Crystal structure data collected by an XRD instrument

Scattering: X-Ray Absorption Spectroscopy

XAS - EXAFS & XANES

- Techniques used to determine the geometric and electronic structure of a sample through X-ray absorption
- Require synchrotron radiation source
 - Intense and tunable X-ray beam.
 - A wide range of data is collected by tuning the photon energy over a range where core electrons can be excited

Method

- X-rays hit the sample, the oscillating electric field of the electromagnetic radiation interacts with the electrons bound in an atom
- Either the radiation will be scattered by these electrons, or absorbed and excite the electrons when ax X-ray beam passes through a medium

X-ray Absorption Near-Edge Structure, XANES

- The pre-edge region is at energies lower than the rising edge
- Extended X-ray Absorption Fine Structure, EXAFS
 - region is at energies above the rising edge, and corresponds to the scattering of the ejected photoelectron off neighboring atoms

